Difference between revisions of "2002 AMC 12B Problems/Problem 25"

m (Solution: center?)
(fixed some relations symbols; product is negative not positive)
Line 19: Line 19:
 
Thus either
 
Thus either
  
<cmath>x - y \ge 0,\quad x+y+6 \ge 0</cmath>
+
<cmath>x - y \ge 0,\quad x+y+6 \le 0</cmath>
  
 
or
 
or
  
<cmath>x - y \le 0,\quad x+y+6 \le 0</cmath>
+
<cmath>x - y \le 0,\quad x+y+6 \ge 0</cmath>
  
 
[[Image:2002_12B_AMC-25.png|center]]
 
[[Image:2002_12B_AMC-25.png|center]]

Revision as of 15:56, 7 June 2009

Problem

Let $f(x) = x^2 + 6x + 1$, and let $R$ denote the set of points $(x,y)$ in the coordinate plane such that \[f(x) + f(y) \le 0 \qquad \text{and} \qquad f(x)-f(y) \le 0\] The area of $R$ is closest to

$\mathrm{(A)}\ 21 \qquad\mathrm{(B)}\ 22 \qquad\mathrm{(C)}\ 23 \qquad\mathrm{(D)}\ 24 \qquad\mathrm{(E)}\ 25$

Solution

The first condition gives us that \[x^2 + 6x + 1 + y^2 + 6y + 1 \le 0 \Longrightarrow (x+3)^2 + (y+3)^2 \le 16\]

which is a circle centered at $(-3,-3)$ with radius $4$. The second condition gives us that

\[x^2 + 6x + 1 - y^2 - 6y - 1 \le 0 \Longrightarrow (x^2 - y^2) + 6(x-y) \le 0 \Longrightarrow (x-y)(x+y+6) \le 0\]

Thus either

\[x - y \ge 0,\quad x+y+6 \le 0\]

or

\[x - y \le 0,\quad x+y+6 \ge 0\]

2002 12B AMC-25.png

Each of those lines passes through $(-3,-3)$ and has slope $\pm 1$, as shown above. Therefore, the area of $R$ is half of the area of the circle, which is $\frac{1}{2} (\pi \cdot 4^2) = 8\pi \approx 25 \Rightarrow \mathrm{(E)}$.

See also

2002 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 24
Followed by
Last problem
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions