2003 AIME II Problems/Problem 12

Problem

The members of a distinguished committee were choosing a president, and each member gave one vote to one of the 27 candidates. For each candidate, the exact percentage of votes the candidate got was smaller by at least 1 than the number of votes for that candidate. What was the smallest possible number of members of the committee?

Solution

Let $v_i$ be the number of votes candidate $i$ received, and let $s=v_1+\cdots+v_{27}$ be the total number of votes cast. Our goal is to determine the smallest possible $s$.

Candidate $i$ got $\frac{v_i}s$ of the votes, hence the percentage of votes she received is $\frac{100v_i}s$. The condition in the problem statement says that $\forall i: \frac{100v_i}s + 1 \leq v_i$.

Obviously, if some $v_i$ would be $0$ or $1$, the condition would be false. Thus $\forall i: v_i\geq 2$. We can then rewrite the above inequality as $\forall i: s\geq\frac{100v_i}{v_i-1}$.

If for some $i$ we have $v_i=2$, then from the inequality we just derived we would have $s\geq 200$. If for some $i$ we have $v_i=3$, then $s\geq 150$. And if for some $i$ we have $v_i=4$, then $s\geq \frac{400}3 = 133\frac13$, and hence $s\geq 134$.

Is it possible to have $s<134$? We just proved that to have such $s$, all $v_i$ have to be at least $5$. But then $s=v_1+\cdots+v_{27}\geq 27\cdot 5 = 135$, which is a contradiction. Hence the smallest possible $s$ is at least $134$.

Now consider a situation where $26$ candidates got $5$ votes each, and one candidate got $4$ votes. In this situation, the total number of votes is exactly $134$, and for each candidate the above inequality is satisfied. Hence the minimum number of committee members is $s=\boxed{134}$.

Note: Each of the $26$ candidates received $\simeq 3.63\%$ votes, and the last candidate received $\simeq 2.985\%$ votes.

See also

2003 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png