Difference between revisions of "2003 AIME II Problems/Problem 3"

m (Solution)
m (See also)
(3 intermediate revisions by 3 users not shown)
Line 2: Line 2:
 
Define a <math>good~word</math> as a sequence of letters that consists only of the letters <math>A</math>, <math>B</math>, and <math>C</math> - some of these letters may not appear in the sequence - and in which <math>A</math> is never immediately followed by <math>B</math>, <math>B</math> is never immediately followed by <math>C</math>, and <math>C</math> is never immediately followed by <math>A</math>. How many seven-letter good words are there?
 
Define a <math>good~word</math> as a sequence of letters that consists only of the letters <math>A</math>, <math>B</math>, and <math>C</math> - some of these letters may not appear in the sequence - and in which <math>A</math> is never immediately followed by <math>B</math>, <math>B</math> is never immediately followed by <math>C</math>, and <math>C</math> is never immediately followed by <math>A</math>. How many seven-letter good words are there?
  
== Solution ==  
+
== Solution 1 ==  
  
 
There are three letters to make the first letter in the sequence. However, after the first letter (whatever it is), only two letters can follow it, since one of the letters is restricted. Therefore, the number of seven-letter good words is <math>3*2^6=192</math>
 
There are three letters to make the first letter in the sequence. However, after the first letter (whatever it is), only two letters can follow it, since one of the letters is restricted. Therefore, the number of seven-letter good words is <math>3*2^6=192</math>
  
 
Therefore, there are <math>\boxed{192}</math> seven-letter good words.
 
Therefore, there are <math>\boxed{192}</math> seven-letter good words.
 +
 +
== Solution 2 ==
 +
 +
There are three choices for the first letter and two choices for each subsequent letter, so there are <math>3\cdot2^{n-1}\ n</math>-letter good words. Substitute <math>n=7</math> to find there are <math>3\cdot2^6=\boxed{192}</math> seven-letter good words. ~ aopsav (Credit to AoPS Alcumus)
  
 
== See also ==
 
== See also ==
 
{{AIME box|year=2003|n=II|num-b=2|num-a=4}}
 
{{AIME box|year=2003|n=II|num-b=2|num-a=4}}
 +
 +
[[Category: Intermediate Combinatorics Problems]]
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 11:15, 20 August 2020

Problem

Define a $good~word$ as a sequence of letters that consists only of the letters $A$, $B$, and $C$ - some of these letters may not appear in the sequence - and in which $A$ is never immediately followed by $B$, $B$ is never immediately followed by $C$, and $C$ is never immediately followed by $A$. How many seven-letter good words are there?

Solution 1

There are three letters to make the first letter in the sequence. However, after the first letter (whatever it is), only two letters can follow it, since one of the letters is restricted. Therefore, the number of seven-letter good words is $3*2^6=192$

Therefore, there are $\boxed{192}$ seven-letter good words.

Solution 2

There are three choices for the first letter and two choices for each subsequent letter, so there are $3\cdot2^{n-1}\ n$-letter good words. Substitute $n=7$ to find there are $3\cdot2^6=\boxed{192}$ seven-letter good words. ~ aopsav (Credit to AoPS Alcumus)

See also

2003 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png