Difference between revisions of "2003 AIME II Problems/Problem 6"

m
Line 3: Line 3:
  
 
== Solution ==
 
== Solution ==
{{solution}}
+
 
 +
Since a <math>13-14-15</math> triangle is a <math>5-12-13</math> triangle and a <math>9-12-15</math> triangle "glued" together on the <math>12</math> side, <math>[ABC]=\frac{1}{2}\cdot12\cdot14=84</math>.
 +
 
 +
There are six points of intersection between <math>\Delta ABC</math> and <math>\Delta A'B'C'</math>. Connect each of these points to <math>G</math>.
 +
 
 +
<asy>
 +
size(8cm);
 +
pair A,B,C,G,D,E,F,A_1,A_2,B_1,B_2,C_1,C_2;
 +
B=(0,0);
 +
A=(5,12);
 +
C=(14,0);
 +
E=(12.6667,8);
 +
D=(7.6667,-4);
 +
F=(-1.3333,8);
 +
G=(6.3333,4);
 +
B_1=(4.6667,0);
 +
B_2=(1.6667,4);
 +
A_1=(3.3333,8);
 +
A_2=(8,8);
 +
C_1=(11,4);
 +
C_2=(9.3333,0);
 +
dot(A);
 +
dot(B);
 +
dot(C);
 +
dot(G);
 +
dot(D);
 +
dot(E);
 +
dot(F);
 +
dot(A_1);
 +
dot(B_1);
 +
dot(C_1);
 +
dot(A_2);
 +
dot(B_2);
 +
dot(C_2);
 +
draw(B--A--C--cycle);
 +
draw(E--D--F--cycle);
 +
draw(B_1--A_2);
 +
draw(A_1--C_2);
 +
draw(C_1--B_2);
 +
label("$B$",B,WSW);
 +
label("$A$",A,N);
 +
label("$C$",C,ESE);
 +
label("$G$",G,S);
 +
label("$B'$",E,ENE);
 +
label("$A'$",D,S);
 +
label("$C'$",F,WNW);
 +
</asy>
 +
 
 +
There are <math>12</math> smaller congruent triangles which make up the desired area. Also, <math>\Delta ABC</math> is made up of <math>9</math> of such triangles.
 +
Therefore, <math>\left[\Delta ABC \bigcup \Delta A'B'C'\right] = \frac{12}{9}[\Delta ABC]= \frac{4}{3}\cdot84=\boxed{112}</math>.
  
 
== See also ==
 
== See also ==
 
{{AIME box|year=2003|n=II|num-b=5|num-a=7}}
 
{{AIME box|year=2003|n=II|num-b=5|num-a=7}}

Revision as of 19:28, 26 July 2008

Problem

In triangle $ABC,$ $AB = 13,$ $BC = 14,$ $AC = 15,$ and point $G$ is the intersection of the medians. Points $A',$ $B',$ and $C',$ are the images of $A,$ $B,$ and $C,$ respectively, after a $180^\circ$ rotation about $G.$ What is the area if the union of the two regions enclosed by the triangles $ABC$ and $A'B'C'?$

Solution

Since a $13-14-15$ triangle is a $5-12-13$ triangle and a $9-12-15$ triangle "glued" together on the $12$ side, $[ABC]=\frac{1}{2}\cdot12\cdot14=84$.

There are six points of intersection between $\Delta ABC$ and $\Delta A'B'C'$. Connect each of these points to $G$.

[asy] size(8cm); pair A,B,C,G,D,E,F,A_1,A_2,B_1,B_2,C_1,C_2; B=(0,0); A=(5,12); C=(14,0); E=(12.6667,8); D=(7.6667,-4); F=(-1.3333,8); G=(6.3333,4); B_1=(4.6667,0); B_2=(1.6667,4); A_1=(3.3333,8); A_2=(8,8); C_1=(11,4); C_2=(9.3333,0); dot(A); dot(B); dot(C); dot(G); dot(D); dot(E); dot(F); dot(A_1); dot(B_1); dot(C_1); dot(A_2); dot(B_2); dot(C_2); draw(B--A--C--cycle); draw(E--D--F--cycle); draw(B_1--A_2); draw(A_1--C_2); draw(C_1--B_2); label("$B$",B,WSW); label("$A$",A,N); label("$C$",C,ESE); label("$G$",G,S); label("$B'$",E,ENE); label("$A'$",D,S); label("$C'$",F,WNW); [/asy]

There are $12$ smaller congruent triangles which make up the desired area. Also, $\Delta ABC$ is made up of $9$ of such triangles. Therefore, $\left[\Delta ABC \bigcup \Delta A'B'C'\right] = \frac{12}{9}[\Delta ABC]= \frac{4}{3}\cdot84=\boxed{112}$.

See also

2003 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions