Difference between revisions of "2003 AIME I Problems/Problem 10"

(Solution 2)
(Solution 2)
Line 34: Line 34:
 
From the givens, we have the following [[angle]] [[measure]]s: <math>m\angle AMC = 150^\circ</math>, <math>m\angle MCB = 83^\circ</math>.  If we define <math>m\angle CMB = \theta</math> then we also have <math>m\angle CBM = 97^\circ - \theta</math>.  Then apply the [[Law of Sines]] to triangles <math>\triangle AMC</math> and <math>\triangle BMC</math> to get
 
From the givens, we have the following [[angle]] [[measure]]s: <math>m\angle AMC = 150^\circ</math>, <math>m\angle MCB = 83^\circ</math>.  If we define <math>m\angle CMB = \theta</math> then we also have <math>m\angle CBM = 97^\circ - \theta</math>.  Then apply the [[Law of Sines]] to triangles <math>\triangle AMC</math> and <math>\triangle BMC</math> to get
  
<cmath>\frac{\sin 150^\circ}{\sin 7^\circ} = \frac{AC}{CM} = \frac{BC}{CM} = \frac{\sin \theta}{(\sin 97^\circ - \theta)}</cmath>
+
<cmath>\frac{\sin 150^\circ}{\sin 7^\circ} = \frac{AC}{CM} = \frac{BC}{CM} = \frac{\sin \theta}{\sin (97^\circ - \theta)}</cmath>
  
 
Clearing [[denominator]]s, evaluating <math>\sin 150^\circ = \frac 12</math> and applying one of our [[trigonometric identities]] to the result gives
 
Clearing [[denominator]]s, evaluating <math>\sin 150^\circ = \frac 12</math> and applying one of our [[trigonometric identities]] to the result gives

Revision as of 00:37, 24 January 2017

Problem

Triangle $ABC$ is isosceles with $AC = BC$ and $\angle ACB = 106^\circ.$ Point $M$ is in the interior of the triangle so that $\angle MAC = 7^\circ$ and $\angle MCA = 23^\circ.$ Find the number of degrees in $\angle CMB.$

Solution

[asy] pointpen = black; pathpen = black+linewidth(0.7); size(220);  /* We will WLOG AB = 2 to draw following */  pair A=(0,0), B=(2,0), C=(1,Tan(37)), M=IP(A--(2Cos(30),2Sin(30)),B--B+(-2,2Tan(23)));  D(MP("A",A)--MP("B",B)--MP("C",C,N)--cycle); D(A--D(MP("M",M))--B); D(C--M); [/asy]

Solution 1

[asy] pointpen = black; pathpen = black+linewidth(0.7); size(220);  /* We will WLOG AB = 2 to draw following */  pair A=(0,0), B=(2,0), C=(1,Tan(37)), M=IP(A--(2Cos(30),2Sin(30)),B--B+(-2,2Tan(23))), N=(2-M.x,M.y);  D(MP("A",A)--MP("B",B)--MP("C",C,N)--cycle); D(A--D(MP("M",M))--B); D(C--M); D(C--D(MP("N",N))--B--N--M,linetype("6 6")+linewidth(0.7));  [/asy]

Take point $N$ inside $\triangle ABC$ such that $\angle CBN = 7^\circ$ and $\angle BCN = 23^\circ$.

$\angle MCN = 106^\circ - 2\cdot 23^\circ = 60^\circ$. Also, since $\triangle AMC$ and $\triangle BNC$ are congruent (by ASA), $CM = CN$. Hence $\triangle CMN$ is an equilateral triangle, so $\angle CNM = 60^\circ$.

Then $\angle MNB = 360^\circ - \angle CNM - \angle CNB = 360^\circ - 60^\circ - 150^\circ = 150^\circ$. We now see that $\triangle MNB$ and $\triangle CNB$ are congruent. Therefore, $CB = MB$, so $\angle CMB = \angle MCB = \boxed{083^\circ}$.

Solution 2

From the givens, we have the following angle measures: $m\angle AMC = 150^\circ$, $m\angle MCB = 83^\circ$. If we define $m\angle CMB = \theta$ then we also have $m\angle CBM = 97^\circ - \theta$. Then apply the Law of Sines to triangles $\triangle AMC$ and $\triangle BMC$ to get

\[\frac{\sin 150^\circ}{\sin 7^\circ} = \frac{AC}{CM} = \frac{BC}{CM} = \frac{\sin \theta}{\sin (97^\circ - \theta)}\]

Clearing denominators, evaluating $\sin 150^\circ = \frac 12$ and applying one of our trigonometric identities to the result gives

\[\frac{1}{2} \cos (7^\circ - \theta )= \sin 7^\circ \sin \theta\]

and multiplying through by 2 and applying the double angle formula gives

\[\cos 7^\circ\cos\theta + \sin7^\circ\sin\theta = 2 \sin7^\circ \sin\theta\]

and so $\cos 7^\circ \cos \theta = \sin 7^\circ \sin\theta \Longleftrightarrow \tan 7^{\circ} = \cot \theta$; since $0^\circ < \theta < 180^\circ$, we must have $\theta = 83^\circ$, so the answer is $\boxed{083}$.

Solution 3

Without loss of generality, let $AC = BC = 1$. Then, using Law of Sines in triangle $AMC$, we get $\frac {1}{\sin 150} = \frac {MC}{\sin 7}$, and using the sine addition formula to evaluate $\sin 150 = \sin (90 + 60)$, we get $MC = 2 \sin 7$.

Then, using Law of Cosines in triangle $MCB$, we get $MB^2 = 4\sin^2 7 + 1 - 4\sin 7(\cos 83) = 1$, since $\cos 83 = \sin 7$. So triangle $MCB$ is isosceles, and $\angle CMB = \boxed{083}$.

See also

2003 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png