Difference between revisions of "2003 AIME I Problems/Problem 12"

(Solution 1: easier solution 1)
Line 15: Line 15:
 
</asy></center>
 
</asy></center>
  
Let <math>AD = x</math> so <math>BC = 640 - 360 - x = 280 - x</math>. By the [[Law of Cosines]] in <math>\triangle ABD</math> at angle <math>A</math> and in <math>\triangle BCD</math> at angle <math>C</math>,
+
By the [[Law of Cosines]] on <math>\triangle ABD</math> at angle <math>A</math> and on <math>\triangle BCD</math> at angle <math>C</math> (note <math>\angle C = \angle A),
<cmath>180^2 + x^2 - 2\cdot180 \cdot x \cdot \cos A = BD^2 = 180^2 + (280 - x)^2 - 2\cdot180\cdot(280 - x) \cdot \cos A.</cmath>  Then
 
<math>x^2 - 360x\cos A = (280 -x)^2 -360(280 - x)\cos A</math> and grouping the <math>\cos A</math> terms gives
 
<math>360(280 - 2x)\cos A = 280(280 - 2x)</math>.
 
 
 
Since <math>x \neq 280 - x</math>, <math>280 - 2x \neq 0</math> and thus
 
<math>360\cos A = 280</math> so <math>\cos A = \frac{7}{9} = 0.7777\ldots</math> and so <math>\lfloor 1000\cos A\rfloor = \boxed{777}</math>.
 
  
 +
<cmath>180^2 + AD^2 - 360 \cdot AD \cos A = 180^2 + BC^2 - 360 \cdot BC \cos A </cmath>
 +
<cmath>(AD^2 - BC^2) - 360(AD - BC) \cos A = 0 </cmath>
 +
<cmath>(AD - BC)(AD + BC - 360 \cos A ) = 0 </cmath>
 +
</math>AD - BC \neq 0<math>, so </math>AD + BC - 360 \cos A = 0<math>. We know that </math>AD + BC = 640 - 360 = 280<math>, so </math>280 - 360 \cos A = 0 \Rightarrow \cos A = \dfrac{7}{9} = 0.777 \ldots<math>, and </math>\lfloor 1000 \cos  A \rfloor = \boxed{777}$.
  
 
===Solution 2===
 
===Solution 2===

Revision as of 16:07, 10 August 2013

Problem

In convex quadrilateral $ABCD, \angle A \cong \angle C, AB = CD = 180,$ and $AD \neq BC.$ The perimeter of $ABCD$ is 640. Find $\lfloor 1000 \cos A \rfloor.$ (The notation $\lfloor x \rfloor$ means the greatest integer that is less than or equal to $x.$)

Solution

Solution 1

[asy] real x = 1.60; /* arbitrary */  pointpen = black; pathpen = black+linewidth(0.7); size(180); real BD = x*x + 1.80*1.80 - 2 * 1.80 * x * 7 / 9; pair A=(0,0),B=(1.8,0),D=IP(CR(A,x),CR(B,BD)),C=OP(CR(D,1.8),CR(B,2.80 - x)); D(MP("A",A)--MP("B",B)--MP("C",C)--MP("D",D,N)--B--A--D); MP("180",(A+B)/2); MP("180",(C+D)/2,NE); D(anglemark(B,A,D)); D(anglemark(D,C,B)); [/asy]

By the Law of Cosines on $\triangle ABD$ at angle $A$ and on $\triangle BCD$ at angle $C$ (note $\angle C = \angle A),

<cmath>180^2 + AD^2 - 360 \cdot AD \cos A = 180^2 + BC^2 - 360 \cdot BC \cos A </cmath> <cmath>(AD^2 - BC^2) - 360(AD - BC) \cos A = 0 </cmath> <cmath>(AD - BC)(AD + BC - 360 \cos A ) = 0 </cmath>$ (Error compiling LaTeX. Unknown error_msg)AD - BC \neq 0$, so$AD + BC - 360 \cos A = 0$. We know that$AD + BC = 640 - 360 = 280$, so$280 - 360 \cos A = 0 \Rightarrow \cos A = \dfrac{7}{9} = 0.777 \ldots$, and$\lfloor 1000 \cos A \rfloor = \boxed{777}$.

Solution 2

Notice that $AB = CD$, and $BD = DB$, and $\angle{DAB} \cong \angle{BCD}$, so we have side-side-angle matching on triangles $ABD$ and $CDB$. Since the problem does not allow $\triangle{ABD} \cong \triangle{CDB}$, we know that $\angle{ADB}$ is not a right angle, and there is a unique other triangle with the matching side-side-angle.

Extend $AD$ to $C'$ so that $\triangle{ABC'}$ is isosceles with $AB = C'B$. Then notice that $\triangle{DC'B}$ has matching side-side-angle, and yet $\triangle{ADB} \not\cong \triangle{C'DB}$ because $\angle{ADB}$ is not right. Therefore $\triangle{C'DB}$ is the unique triangle mentioned above, so $\triangle{CDB}$ is congruent, in some order of vertices, to $\triangle{C'DB}$. Since $\triangle{CDB} \cong \triangle{C'DB}$ would imply $\triangle{CDB} = \triangle{C'DB}$, making quadrilateral $ABCD$ degenerate, we must have $\triangle{CDB} \cong \triangle{C'BD}$.

Since the perimeter of $ABCD$ is $640$, $AD + BC = 640 - 180 - 180 = 280$. Hence $280 = AD + BC = AD + DC'$. Drop the altitude of $\triangle{ABC'}$ from $B$ and call the foot $P$. Then right triangle trigonometry on $\triangle{APB}$ shows that $\cos{A} = AP/AB = 140/180 = 7/9$, so $\lfloor 1000 \cos A \rfloor = \boxed{777}$.

See also

2003 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png