2003 AIME I Problems/Problem 14

Revision as of 15:42, 11 June 2008 by Azjps (talk | contribs) (solution)

Problem

The decimal representation of $m/n,$ where $m$ and $n$ are relatively prime positive integers and $m < n,$ contains the digits $2, 5$, and $1$ consecutively, and in that order. Find the smallest value of $n$ for which this is possible.

Solution

To find the smallest value of $n$, we consider when the first three digits after the decimal point are $0.251\ldots$.


Otherwise, suppose the number is in the form of $\frac{m}{n} = 0.X251 \ldots$, were $X$ is a string of $k$ digits and $n$ is small as possible. Then $10^k \cdot \frac{m}{n} - X = \frac{10^k m - nX}{n} = 0.251 \ldots$. Since $10^k m - nX$ is an integer and $\frac{10^k m - nX}{n}$ is a fraction between $0$ and $1$, we can rewrite this as $\frac{10^k m - nX}{n} = \frac{p}{q}$, where $q \le n$. Then the fraction $\frac pq = 0.251 \ldots$ suffices.

Thus we have $\frac{m}{n} = 0.251\ldots$, or

$\frac{251}{1000} \le \frac{m}{n} < \frac{252}{1000} \Longleftrightarrow 251n \le 1000m < 252n \Longleftrightarrow n \le 250(4m-n) < 2n.$

As $4m > n$, we know that the minimum value of $4m - n$ is $1$; hence we need $250 < 2n \Longrightarrow 125 < n$. Since $4m - n = 1$, we need $n + 1$ to be divisible by $4$, and this first occurs when $n = \boxed{ 127 }$ (note that if $4m-n > 1$, then $n > 250$). Indeed, this gives $m = 32$ and the fraction $\frac {32}{127}\approx 0.25196 \ldots$).

See also

2003 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions