Difference between revisions of "2003 AIME I Problems/Problem 15"

(solution (mass points) by me@home, Asymptote [myself])
m (Solution)
Line 14: Line 14:
 
Having determined <math>CB/CF</math>, we reassign mass points to determine <math>FE/FD</math>. This setup involves <math>\tri CFD</math> and [[transversal]] <math>MEB</math>. For simplicity, put masses of <math>240,289</math> at <math>C,F</math>. To find the mass we should put at <math>D</math>, we compute <math>CM/MD</math>: applying the Angle Bisector Theorem again and using the fact <math>M</math> is a midpoint, we find
 
Having determined <math>CB/CF</math>, we reassign mass points to determine <math>FE/FD</math>. This setup involves <math>\tri CFD</math> and [[transversal]] <math>MEB</math>. For simplicity, put masses of <math>240,289</math> at <math>C,F</math>. To find the mass we should put at <math>D</math>, we compute <math>CM/MD</math>: applying the Angle Bisector Theorem again and using the fact <math>M</math> is a midpoint, we find
 
<cmath>
 
<cmath>
\frac {CM}{MD} = \frac {169\cdot\frac {260}{289} - 130}{130} = \frac {49}{289}
+
\frac {MD}{CM} = \frac {169\cdot\frac {260}{289} - 130}{130} = \frac {49}{289}
 
</cmath>
 
</cmath>
 
At this point we could find the mass at <math>D</math> but it's unnecessary.
 
At this point we could find the mass at <math>D</math> but it's unnecessary.

Revision as of 18:11, 11 December 2012

Problem

In $\triangle ABC, AB = 360, BC = 507,$ and $CA = 780.$ Let $M$ be the midpoint of $\overline{CA},$ and let $D$ be the point on $\overline{CA}$ such that $\overline{BD}$ bisects angle $ABC.$ Let $F$ be the point on $\overline{BC}$ such that $\overline{DF} \perp \overline{BD}.$ Suppose that $\overline{DF}$ meets $\overline{BM}$ at $E.$ The ratio $DE: EF$ can be written in the form $m/n,$ where $m$ and $n$ are relatively prime positive integers. Find $m + n.$

Solution

[asy] size(400); pointpen = black; pathpen = black+linewidth(0.7);  pair A=(0,0),C=(7.8,0),B=IP(CR(A,3.6),CR(C,5.07)), M=(A+C)/2, Da = bisectorpoint(A,B,C), D=IP(B--B+(Da-B)*10,A--C), F=IP(D--D+10*(B-D)*dir(270),B--C), E=IP(B--M,D--F); /* scale down by 100x */ D(MP("A",A)--MP("B",B,N)--MP("C",C)--cycle); D(B--D(MP("D",D))--D(MP("F",F,NE))); D(B--D(MP("M",M))); MP("E",E,NE); D(rightanglemark(F,D,B,4)); MP("390",(M+C)/2); MP("390",(M+C)/2); MP("360",(A+B)/2,NW); MP("507",(B+C)/2,NE); [/asy]

For computation, instead consider the triangle as above except $AB = 120,BC = 169,CA = 260$. In the following, let the name of a point represent the mass located there.

By the Angle Bisector Theorem, we can place mass points on $C,D,A$ of $120,\,289,\,169$ respectively. Thus, a mass of $\frac {289}{2}$ belongs at $F$ (seen by reflecting $F$ across $BD$, to an image which lies on $AB$). Having determined $CB/CF$, we reassign mass points to determine $FE/FD$. This setup involves $\tri CFD$ (Error compiling LaTeX. Unknown error_msg) and transversal $MEB$. For simplicity, put masses of $240,289$ at $C,F$. To find the mass we should put at $D$, we compute $CM/MD$: applying the Angle Bisector Theorem again and using the fact $M$ is a midpoint, we find \[\frac {MD}{CM} = \frac {169\cdot\frac {260}{289} - 130}{130} = \frac {49}{289}\] At this point we could find the mass at $D$ but it's unnecessary. \[\frac {DE}{EF} = \frac {F}{D} = \frac {F}{C}\frac {C}{D} = \frac {289}{240}\frac {49}{289} = \boxed{\frac {49}{240}}\] and the answer is $49 + 240 = \boxed{289}$.

See also

2003 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Last question
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions