Difference between revisions of "2003 AIME I Problems/Problem 4"

m (Solution)
m (Problem)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
Given that <math> \log_{10} \sin x + \log_{10} \cos x = -1 </math> and that <math> \log_{10} (\sin x + \cos x) = \frac{1}{2} (\log_{10} n - 1), </math> find <math> n. </math>
+
Given that <math> \log_{10} \sin x + \log_{10} \cos x = -1 </math> and that <math> \log_{10} (\sin x + \cos x) = \frac{1}{2} (\log_{10} n - 10), </math> find <math> n. </math>
 +
 
 
== Solution ==
 
== Solution ==
 
Using the properties of [[logarithm]]s, we can simplify the first equation to <math>\log_{10} \sin x + \log_{10} \cos x = \log_{10}(\sin x \cos x) = -1 </math>. Therefore, <cmath> \sin x \cos x = \frac{1}{10}.\qquad (*)</cmath>
 
Using the properties of [[logarithm]]s, we can simplify the first equation to <math>\log_{10} \sin x + \log_{10} \cos x = \log_{10}(\sin x \cos x) = -1 </math>. Therefore, <cmath> \sin x \cos x = \frac{1}{10}.\qquad (*)</cmath>

Revision as of 14:23, 26 February 2017

Problem

Given that $\log_{10} \sin x + \log_{10} \cos x = -1$ and that $\log_{10} (\sin x + \cos x) = \frac{1}{2} (\log_{10} n - 10),$ find $n.$

Solution

Using the properties of logarithms, we can simplify the first equation to $\log_{10} \sin x + \log_{10} \cos x = \log_{10}(\sin x \cos x) = -1$. Therefore, \[\sin x \cos x = \frac{1}{10}.\qquad (*)\]

Now, manipulate the second equation. \begin{align*} \log_{10} (\sin x + \cos x) &= \frac{1}{2}(\log_{10} n - \log_{10} 10) \\ \log_{10} (\sin x + \cos x) &= \left(\log_{10} \sqrt{\frac{n}{10}}\right) \\ \sin x + \cos x &= \sqrt{\frac{n}{10}} \\ (\sin x + \cos x)^{2} &= \left(\sqrt{\frac{n}{10}}\right)^2 \\ \sin^2 x + \cos^2 x +2 \sin x \cos x &= \frac{n}{10} \\ \end{align*}

By the Pythagorean identities, $\sin ^2 x + \cos ^2 x = 1$, and we can substitute the value for $\sin x \cos x$ from $(*)$. $1 + 2\left(\frac{1}{10}\right) = \frac{n}{10} \Longrightarrow n = \boxed{012}$.

See also

2003 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png