Difference between revisions of "2003 AIME I Problems/Problem 7"

m
(+solution, box)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
Point <math> B </math> is on <math> \overline{AC} </math> with <math> AB = 9 </math> and <math> BC = 21. </math> Point <math> D </math> is not on <math> \overline{AC} </math> so that <math> AD = CD, </math> and <math> AD </math> and <math> BD </math> are integers. Let <math> s </math> be the sum of all possible perimeters of <math> \triangle ACD. </math> Find <math> s. </math>
+
[[Point]] <math> B </math> is on <math> \overline{AC} </math> with <math> AB = 9 </math> and <math> BC = 21. </math> Point <math> D </math> is not on <math> \overline{AC} </math> so that <math> AD = CD, </math> and <math> AD </math> and <math> BD </math> are [[integer]]s. Let <math> s </math> be the sum of all possible [[perimeter]]s of <math> \triangle ACD</math>. Find <math> s. </math>
  
 
== Solution ==
 
== Solution ==
{{solution}}
+
{{image}}
 +
Denote the height of <math>\triangle ACD</math> as <math>h</math>, <math>x = AD = CD</math>, and <math>y = BD</math>. Using the Pythagorean theorem, we find that <math>h^2 = y^2 - 6^2</math> and <math>h^2 = x^2 - 15^2</math>. Thus, <math>y^2 - 36 = x^2 - 225 \Longrightarrow x^2 - y^2 = 189</math>. The LHS is [[difference of squares]], so <math>(x + y)(x - y) = 189</math>. As both <math>x,\ y</math> are integers, <math>x+y,\ x-y</math> must be integral divisors of 189.
 +
 
 +
The divisors of 189 are <math>(1,189)\ (3,63)\ (7,27)\ (9,21)</math>. This yields the four potential sets for <math>(x,y)</math> as <math>(95,94)\ (33,30)\ (17,10)\ (15,6)</math>. The last is not a possibility since it simply [[degenerate]]s into a [[line]]. The sum of the three possible perimeters of <math>
 +
\triangle ACD</math> is equal to <math>3(AC) + 2(x_1 + x_2 + x_3) = 90 + 2(95 + 33 + 17) = 380</math>.
 +
 
 
== See also ==
 
== See also ==
* [[2003 AIME I Problems/Problem 6 | Previous problem]]
+
{{AIME box|year=2003|n=I|num-b=4|num-a=6}}
* [[2003 AIME I Problems/Problem 8 | Next problem]]
 
* [[2003 AIME I Problems]]
 
  
 
[[Category:Intermediate Geometry Problems]]
 
[[Category:Intermediate Geometry Problems]]

Revision as of 17:12, 8 March 2007

Problem

Point $B$ is on $\overline{AC}$ with $AB = 9$ and $BC = 21.$ Point $D$ is not on $\overline{AC}$ so that $AD = CD,$ and $AD$ and $BD$ are integers. Let $s$ be the sum of all possible perimeters of $\triangle ACD$. Find $s.$

Solution


An image is supposed to go here. You can help us out by creating one and editing it in. Thanks.


Denote the height of $\triangle ACD$ as $h$, $x = AD = CD$, and $y = BD$. Using the Pythagorean theorem, we find that $h^2 = y^2 - 6^2$ and $h^2 = x^2 - 15^2$. Thus, $y^2 - 36 = x^2 - 225 \Longrightarrow x^2 - y^2 = 189$. The LHS is difference of squares, so $(x + y)(x - y) = 189$. As both $x,\ y$ are integers, $x+y,\ x-y$ must be integral divisors of 189.

The divisors of 189 are $(1,189)\ (3,63)\ (7,27)\ (9,21)$. This yields the four potential sets for $(x,y)$ as $(95,94)\ (33,30)\ (17,10)\ (15,6)$. The last is not a possibility since it simply degenerates into a line. The sum of the three possible perimeters of $\triangle ACD$ is equal to $3(AC) + 2(x_1 + x_2 + x_3) = 90 + 2(95 + 33 + 17) = 380$.

See also

2003 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions