

Line 1: 
Line 1: 
−  == Problem ==
 +  #REDIRECT[[2003 AMC 12A Problems/Problem 1]] 
−  What is the difference between the sum of the first <math>2003</math> even counting numbers and the sum of the first <math>2003</math> odd counting numbers?
 
−   
−  <math> \mathrm{(A) \ } 0\qquad \mathrm{(B) \ } 1\qquad \mathrm{(C) \ } 2\qquad \mathrm{(D) \ } 2003\qquad \mathrm{(E) \ } 4006 </math>
 
−   
−  == Solution ==
 
−  *The first <math>2003</math> even counting numbers are <math>2,4,6,...,4006</math>.
 
−  *The first <math>2003</math> odd counting numbers are <math>1,3,5,...,4005</math>.
 
−   
−  Thus, the problem is asking for the value of <math>(2+4+6+\ldots+4006)(1+3+5+\ldots+4005)</math>.
 
−  :<math>\displaystyle (2+4+6+\ldots+4006)(1+3+5+\ldots+4005) = (21)+(43)+(65)+\ldots+(40064005)</math>
 
−  :<math>= 1+1+1+\ldots+1 = 2003 \Longrightarrow \mbox{D}</math>.
 
−   
−  Alternatively, using the sum of an [[arithmetic progression]] formula, we can write <math>\frac{2003}{2}(2 + 4006)  \frac{2003}{2}(1 + 4005) = \frac{2003}{2} \cdot 2 = 2003</math>.
 
−   
−  == See also ==
 
−  {{AMC10 boxyear=2003ab=Abefore=First Questionnuma=2}}
 
−   
−  [[Category:Introductory Algebra Problems]]
 