Difference between revisions of "2003 AMC 10A Problems/Problem 13"

(Solution)
(Solution)
Line 85: Line 85:
 
=
 
=
 
  \begin{bmatrix}
 
  \begin{bmatrix}
     0.5 \\
+
     \frac{1}{2} \\
     3.5 \\
+
     \frac{7}{2} \\
 
     16 \\
 
     16 \\
 
   \end{bmatrix}  
 
   \end{bmatrix}  
 
</math>
 
</math>
Which means that x = 0.5, y = 3.5, and z = 16. Therefore, xyz = (0.5)(3.5)(16) = 28
+
Which means that x = \frac{1}{2}, y = \frac{7}{2}, and z = 16. Therefore, xyz = \frac{1}{2}\cdot\frac{7}{2}\cdot16 = 28
  
 
== See Also ==
 
== See Also ==

Revision as of 18:27, 21 November 2007

Problem

The sum of three numbers is $20$. The first is four times the sum of the other two. The second is seven times the third. What is the product of all three?

$\mathrm{(A) \ } 28\qquad \mathrm{(B) \ } 40\qquad \mathrm{(C) \ } 100\qquad \mathrm{(D) \ } 400\qquad \mathrm{(E) \ } 800$

Solution

Let the numbers be $x$, $y$, and $z$ in that order.

$y=7z$

$x=4(y+z)=4(7z+z)=4(8z)=32z$

$x+y+z=32z+7z+z=40z=20$

$z=\frac{20}{40}=\frac{1}{2}$

$y=7z=7\cdot\frac{1}{2}=\frac{7}{2}$

$x=32z=32\cdot\frac{1}{2}=16$

Therefore, the product of all three numbers is $xyz=16\cdot\frac{7}{2}\cdot\frac{1}{2}=28 \Rightarrow A$

Alternatively, we can set up the system in matrix form:

$x+y+z=20$

$x=4(y+z)=4y+4z$

$y=7z$

is equivalent to

$1x+1y+1z=20$

$1x-4y-4z=0$

$0x+1y-7z=0$

Or, in matrix form $\begin{bmatrix}     1 & 1 & 1 \\     1 & -4 & -4 \\     0 & 1 & -7   \end{bmatrix}   \begin{bmatrix}     x \\     y \\     z \\   \end{bmatrix} =   \begin{bmatrix}     20 \\     0 \\     0 \\   \end{bmatrix}$ To solve this matrix equation, we can rearrange it thus: $\begin{bmatrix}     x \\     y \\     z \\   \end{bmatrix} =   \begin{bmatrix}     1 & 1 & 1 \\     1 & -4 & -4 \\     0 & 1 & -7   \end{bmatrix} ^{-1}   \begin{bmatrix}     20 \\     0 \\     0 \\   \end{bmatrix}$ Solving this matrix equation by using inverse matrices and matrix multiplication yields $\begin{bmatrix}     x \\     y \\     z \\   \end{bmatrix} =  \begin{bmatrix}     \frac{1}{2} \\     \frac{7}{2} \\     16 \\   \end{bmatrix}$ Which means that x = \frac{1}{2}, y = \frac{7}{2}, and z = 16. Therefore, xyz = \frac{1}{2}\cdot\frac{7}{2}\cdot16 = 28

See Also