Difference between revisions of "2003 AMC 10A Problems/Problem 19"

(added problem and solution)
 
(added pic)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
 
A semicircle of diameter <math>1</math> sits at the top of a semicircle of diameter <math>2</math>, as shown. The shaded area inside the smaller semicircle and outside the larger semicircle is called a ''lune''. Determine the area of this lune.  
 
A semicircle of diameter <math>1</math> sits at the top of a semicircle of diameter <math>2</math>, as shown. The shaded area inside the smaller semicircle and outside the larger semicircle is called a ''lune''. Determine the area of this lune.  
 +
 +
[[Image:2003amc10a19.gif]]
  
 
<math> \mathrm{(A) \ } \frac{1}{6}\pi-\frac{\sqrt{3}}{4}\qquad \mathrm{(B) \ } \frac{\sqrt{3}}{4}-\frac{1}{12}\pi\qquad \mathrm{(C) \ } \frac{\sqrt{3}}{4}-\frac{1}{24}\pi\qquad \mathrm{(D) \ } \frac{\sqrt{3}}{4}+\frac{1}{24}\pi\qquad \mathrm{(E) \ } \frac{\sqrt{3}}{4}+\frac{1}{12}\pi </math>
 
<math> \mathrm{(A) \ } \frac{1}{6}\pi-\frac{\sqrt{3}}{4}\qquad \mathrm{(B) \ } \frac{\sqrt{3}}{4}-\frac{1}{12}\pi\qquad \mathrm{(C) \ } \frac{\sqrt{3}}{4}-\frac{1}{24}\pi\qquad \mathrm{(D) \ } \frac{\sqrt{3}}{4}+\frac{1}{24}\pi\qquad \mathrm{(E) \ } \frac{\sqrt{3}}{4}+\frac{1}{12}\pi </math>
  
 
== Solution ==
 
== Solution ==
 +
[[Image:2003amc10a19solution.gif]]
 +
 
The shaded area is equal to the area of the smaller semicircle minus the area of a sector of the larger circle plus the area of a triangle formed by two radii of the larger semicircle and the diameter of the smaller semicircle.  
 
The shaded area is equal to the area of the smaller semicircle minus the area of a sector of the larger circle plus the area of a triangle formed by two radii of the larger semicircle and the diameter of the smaller semicircle.  
  

Revision as of 20:18, 4 November 2006

Problem

A semicircle of diameter $1$ sits at the top of a semicircle of diameter $2$, as shown. The shaded area inside the smaller semicircle and outside the larger semicircle is called a lune. Determine the area of this lune.

2003amc10a19.gif

$\mathrm{(A) \ } \frac{1}{6}\pi-\frac{\sqrt{3}}{4}\qquad \mathrm{(B) \ } \frac{\sqrt{3}}{4}-\frac{1}{12}\pi\qquad \mathrm{(C) \ } \frac{\sqrt{3}}{4}-\frac{1}{24}\pi\qquad \mathrm{(D) \ } \frac{\sqrt{3}}{4}+\frac{1}{24}\pi\qquad \mathrm{(E) \ } \frac{\sqrt{3}}{4}+\frac{1}{12}\pi$

Solution

2003amc10a19solution.gif

The shaded area is equal to the area of the smaller semicircle minus the area of a sector of the larger circle plus the area of a triangle formed by two radii of the larger semicircle and the diameter of the smaller semicircle.

The area of the smaller semicircle is $\frac{1}{2}\pi\cdot(\frac{1}{2})^{2}=\frac{1}{8}\pi$.

Since the radius of the larger semicircle is equal to the diameter of the smaller semicircle, the triangle is an equilateral triangle and the sector measures $60^\circ$.

The area of the $60^\circ$ sector of the larger semicircle is $\frac{60}{360}\pi\cdot(\frac{2}{2})^{2}=\frac{1}{6}\pi$.

The area of the triangle is $\frac{1^{2}\sqrt{3}}{4}=\frac{\sqrt{3}}{4}$

So the shaded area is $\frac{1}{8}\pi-\frac{1}{6}\pi+\frac{\sqrt{3}}{4}=\frac{\sqrt{3}}{4}-\frac{1}{24}\pi \Rightarrow C$

See Also

Invalid username
Login to AoPS