Difference between revisions of "2003 AMC 10B Problems/Problem 23"

(Solution 2)
Line 22: Line 22:
 
==See Also==
 
==See Also==
 
{{AMC10 box|year=2003|ab=B|num-b=22|num-a=24}}
 
{{AMC10 box|year=2003|ab=B|num-b=22|num-a=24}}
 +
{{MAA Notice}}

Revision as of 12:10, 4 July 2013

Problem

A regular octagon $ABCDEFGH$ has an area of one square unit. What is the area of the rectangle $ABEF$?

[asy] unitsize(1cm); defaultpen(linewidth(.8pt)+fontsize(8pt)); pair C=dir(22.5), B=dir(67.5), A=dir(112.5), H=dir(157.5), G=dir(202.5), F=dir(247.5), E=dir(292.5), D=dir(337.5); draw(A--B--C--D--E--F--G--H--cycle); label("$A$",A,NNW); label("$B$",B,NNE); label("$C$",C,ENE); label("$D$",D,ESE); label("$E$",E,SSE); label("$F$",F,SSW); label("$G$",G,WSW); label("$H$",H,WNW);[/asy]

$\textbf{(A)}\ 1-\frac{\sqrt2}{2}\qquad\textbf{(B)}\ \frac{\sqrt2}{4}\qquad\textbf{(C)}\ \sqrt2-1\qquad\textbf{(D)}\ \frac{1}2\qquad\textbf{(E)}\ \frac{1+\sqrt2}{4}$

Solution 1

Here is an easy way to look at this, where $p$ is the perimeter, and $a$ is the apothem:

Area of Octagon: $\frac{ap}{2}=1$.

Area of Rectangle: $\frac{p}{8}\times 2a=\frac{ap}{4}$.

You can see from this that the octagon's area is twice as large as the rectangle's area is $\boxed{\textbf{(D)}\ \frac{1}{2}}$.

Solution 2

Here is a less complicated way than that of the user above. If you draw lines connecting opposite vertices and draw the rectangle ABEF, you can see that two of the triangles share the same base and height with half the rectangle. Therefore, the rectangle's area is the same as 4 of these triangles, and is $\boxed{\textbf{(D)}\ \frac{1}{2}}$ the area of the octagon

See Also

2003 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png