2003 AMC 10B Problems/Problem 23

Revision as of 14:14, 5 February 2012 by Pieslinger (talk | contribs) (Solution 2)


A regular octagon $ABCDEFGH$ has an area of one square unit. What is the area of the rectangle $ABEF$?

[asy] unitsize(1cm); defaultpen(linewidth(.8pt)+fontsize(8pt)); pair C=dir(22.5), B=dir(67.5), A=dir(112.5), H=dir(157.5), G=dir(202.5), F=dir(247.5), E=dir(292.5), D=dir(337.5); draw(A--B--C--D--E--F--G--H--cycle); label("$A$",A,NNW); label("$B$",B,NNE); label("$C$",C,ENE); label("$D$",D,ESE); label("$E$",E,SSE); label("$F$",F,SSW); label("$G$",G,WSW); label("$H$",H,WNW);[/asy]

$\textbf{(A)}\ 1-\frac{\sqrt2}{2}\qquad\textbf{(B)}\ \frac{\sqrt2}{4}\qquad\textbf{(C)}\ \sqrt2-1\qquad\textbf{(D)}\ \frac{1}2\qquad\textbf{(E)}\ \frac{1+\sqrt2}{4}$

Solution 1

Here is an easy way to look at this, where $p$ is the perimeter, and $a$ is the apothem:

Area of Octagon: $\frac{ap}{2}=1$.

Area of Rectangle: $\frac{p}{8}\times 2a=\frac{ap}{4}$.

You can see from this that the octagon's area is twice as large as the rectangle's area is $\boxed{\textbf{(D)}\ \frac{1}{2}}$.

Solution 2

Here is a less complicated way than that of the user above. If you draw lines connecting opposite vertices and draw the rectangle ABEF, you can see that two of the triangles share the same base and height with half the rectangle. Therefore, the rectangle's area is the same as 4 of these triangles, and is $\boxed{\textbf{(D)}\ \frac{1}{2}}$ the area of the octagon

See Also

2003 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
Invalid username
Login to AoPS