Difference between revisions of "2003 AMC 12A Problems/Problem 17"

(Problem)
Line 2: Line 2:
 
Square <math>ABCD</math> has sides of length <math>4</math>, and <math>M</math> is the midpoint of <math>\overline{CD}</math>. A circle with radius <math>2</math> and center <math>M</math> intersects a circle with radius <math>4</math> and center <math>A</math> at points <math>P</math> and <math>D</math>. What is the distance from <math>P</math> to <math>\overline{AD}</math>?
 
Square <math>ABCD</math> has sides of length <math>4</math>, and <math>M</math> is the midpoint of <math>\overline{CD}</math>. A circle with radius <math>2</math> and center <math>M</math> intersects a circle with radius <math>4</math> and center <math>A</math> at points <math>P</math> and <math>D</math>. What is the distance from <math>P</math> to <math>\overline{AD}</math>?
  
[[Image:5d50417537c6cddfb70810403c62787b889cdcb1.png]]
+
<asy>
 +
pair A,B,C,D,M,P;
 +
D=(0,0);
 +
C=(10,0);
 +
B=(10,10);
 +
A=(0,10);
 +
M=(5,0);
 +
P=(8,4);
 +
dot(M);
 +
dot(P);
 +
draw(A--B--C--D--cycle,linewidth(0.7));
 +
draw((5,5)..D--C..cycle,linewidth(0.7));
 +
draw((7.07,2.93)..B--A--D..cycle,linewidth(0.7));
 +
label("$A$",A,NW);
 +
label("$B$",B,NE);
 +
label("$C$",C,SE);
 +
label("$D$",D,SW);
 +
label("$M$",M,S);
 +
label("$P$",P,N);
 +
</asy>
  
 
<math>\textbf{(A)}\ 3 \qquad \textbf{(B)}\ \frac {16}{5} \qquad \textbf{(C)}\ \frac {13}{4} \qquad \textbf{(D)}\ 2\sqrt {3} \qquad \textbf{(E)}\ \frac {7}{2}</math>
 
<math>\textbf{(A)}\ 3 \qquad \textbf{(B)}\ \frac {16}{5} \qquad \textbf{(C)}\ \frac {13}{4} \qquad \textbf{(D)}\ 2\sqrt {3} \qquad \textbf{(E)}\ \frac {7}{2}</math>

Revision as of 22:08, 12 February 2017

Problem

Square $ABCD$ has sides of length $4$, and $M$ is the midpoint of $\overline{CD}$. A circle with radius $2$ and center $M$ intersects a circle with radius $4$ and center $A$ at points $P$ and $D$. What is the distance from $P$ to $\overline{AD}$?

[asy] pair A,B,C,D,M,P; D=(0,0); C=(10,0); B=(10,10); A=(0,10); M=(5,0); P=(8,4); dot(M); dot(P); draw(A--B--C--D--cycle,linewidth(0.7)); draw((5,5)..D--C..cycle,linewidth(0.7)); draw((7.07,2.93)..B--A--D..cycle,linewidth(0.7)); label("$A$",A,NW); label("$B$",B,NE); label("$C$",C,SE); label("$D$",D,SW); label("$M$",M,S); label("$P$",P,N); [/asy]

$\textbf{(A)}\ 3 \qquad \textbf{(B)}\ \frac {16}{5} \qquad \textbf{(C)}\ \frac {13}{4} \qquad \textbf{(D)}\ 2\sqrt {3} \qquad \textbf{(E)}\ \frac {7}{2}$

Solution 1

Let $D$ be the origin. $A$ is the point $(0,4)$ and $M$ is the point $(2,0)$. We are given the radius of the quarter circle and semicircle as $4$ and $2$, respectively, so their equations, respectively, are:

$x^2 + (y-4)^2 = 4^2$

$(x-2)^2 + y^2 = 2^2$

Subtract the second equation from the first:

$x^2 + (y - 4)^2 - (x - 2)^2 - y^2 = 12$

$4x - 8y + 12 = 12$

$x = 2y.$

Then substitute:

$(2y)^2 + (y - 4)^2 = 16$

$4y^2 + y^2 - 8y + 16 = 16$

$5y^2 - 8y = 0$

$y(5y - 8) = 0.$

Thus $y = 0$ and $y = \frac{8}{5}$ making $x = 0$ and $x = \frac{16}{5}$.

The first value of $0$ is obviously referring to the x-coordinate of the point where the circles intersect at the origin, $D$, so the second value must be referring to the x coordinate of $P$. Since $\overline{AD}$ is the y-axis, the distance to it from $P$ is the same as the x-value of the coordinate of $P$, so the distance from $P$ to $\overline{AD}$ is $\frac{16}{5} \Rightarrow B$

Solution 2

Note that $P$ is merely a reflection of $D$ over $AM$. Call the intersection of $AM$ and $DP$ $X$. Drop perpendiculars from $X$ and $P$ to $AD$, and denote their respective points of intersection by $J$ and $K$. We then have $\triangle DXJ\sim\triangle DPK$, with a scale factor of 2. Thus, we can find $XJ$ and double it to get our answer. With some analytical geometry, we find that $XJ=\frac{8}{5}$, implying that $PK=\frac{16}{5}$.

Solution 3

As in Solution 2, draw in $DP$ and $AM$ and denote their intersection point $X$. Next, drop a perpendicular from $P$ to $AD$ and denote the foot as $Z$. $AP \cong AD$ as they are both radii and similarly $DM \cong MP$ so $APMD$ is a kite and $DX \perp XM$ by a well-known theorem.

Pythagorean theorem gives us $AM=2 \sqrt{5}$. Clearly $\triangle XMD \sim \triangle XDA \sim \triangle DMA \sim \triangle ZDP$ by angle-angle and $\triangle XMD \cong \triangle XMP$ by Hypotenuse Leg. Manipulating similar triangles gives us $PZ=\frac{16}{5}$

Solution 4

Using the double-angle formula for sine, what we need to find is $AP\cdot \sin(DAP) = AP\cdot  2\sin( DAM) \cos(DAM) = 4\cdot 2\cdot \frac{2}{\sqrt{20}}\cdot\frac{4}{\sqrt{20}} = \frac{16}{5}$.

See Also

2003 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png