2003 AMC 12A Problems/Problem 20

Revision as of 13:46, 1 August 2011 by Joshxiong (talk | contribs) (Created page with "==Problem== How many <math>15</math>-letter arrangements of <math>5</math> A's, <math>5</math> B's, and <math>5</math> C's have no A's in the first <math>5</math> letters, no B's...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

How many $15$-letter arrangements of $5$ A's, $5$ B's, and $5$ C's have no A's in the first $5$ letters, no B's in the next $5$ letters, and no C's in the last $5$ letters?

$\textrm{(A)}\ \sum_{k=0}^{5}\binom{5}{k}^{3}\qquad\textrm{(B)}\ 3^{5}\cdot 2^{5}\qquad\textrm{(C)}\ 2^{15}\qquad\textrm{(D)}\ \frac{15!}{(5!)^{3}}\qquad\textrm{(E)}\ 3^{15}$

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See Also

2003 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 19
Followed by
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions
Invalid username
Login to AoPS