Difference between revisions of "2003 AMC 12A Problems/Problem 22"

m (Solution)
m (Solution)
Line 13: Line 13:
 
== Solution ==
 
== Solution ==
  
If <math>A</math> and <math>B</math> meet, their paths connect <math>(0,0)</math> and <math>(5,7).</math> There are <math>\binom{12}{5}=792</math> such paths. Since the path is <math>12</math> units long, they must meet after each travels <math>6</math> units, so the probability is <math>\frac{792}{2^{6}\cdot 2^{6}} \approx 0.20 \Rightarrow \boxed{C}</math>
+
If <math>A</math> and <math>B</math> meet, their paths connect <math>(0,0)</math> and <math>(5,7).</math> There are <math>\binom{12}{5}=792</math> such paths. Since the path is <math>12</math> units long, they must meet after each travels <math>6</math> units, so the probability is <math>\frac{792}{2^{6}\cdot 2^{6}} \approx 0.20 \Rightarrow \boxed{C}</math>.
  
 
== See Also ==
 
== See Also ==

Revision as of 20:38, 15 March 2019

Problem

Objects $A$ and $B$ move simultaneously in the coordinate plane via a sequence of steps, each of length one. Object $A$ starts at $(0,0)$ and each of its steps is either right or up, both equally likely. Object $B$ starts at $(5,7)$ and each of its steps is either to the left or down, both equally likely. Which of the following is closest to the probability that the objects meet?

$\mathrm{(A)} \ 0.10 \qquad \mathrm{(B)} \ 0.15 \qquad \mathrm{(C)} \ 0.20 \qquad \mathrm{(D)} \ 0.25 \qquad \mathrm{(E)} \ 0.30 \qquad$

Solution

If $A$ and $B$ meet, their paths connect $(0,0)$ and $(5,7).$ There are $\binom{12}{5}=792$ such paths. Since the path is $12$ units long, they must meet after each travels $6$ units, so the probability is $\frac{792}{2^{6}\cdot 2^{6}} \approx 0.20 \Rightarrow \boxed{C}$.

See Also

2003 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS