# Difference between revisions of "2003 AMC 12A Problems/Problem 24"

## Problem

If $a\geq b > 1,$ what is the largest possible value of $\log_{a}(a/b) + \log_{b}(b/a)?$ $\mathrm{(A)}\ -2 \qquad \mathrm{(B)}\ 0 \qquad \mathrm{(C)}\ 2 \qquad \mathrm{(D)}\ 3 \qquad \mathrm{(E)}\ 4$

## Solution

Using logarithmic rules, we see that $$\log_{a}a-\log_{a}b+\log_{b}b-\log_{b}a = 2-(\log_{a}b+\log_{b}a)$$ $$=2-(\log_{a}b+\frac {1}{\log_{a}b})$$

Since $a$ and $b$ are both greater than $1$, using AM-GM gives that the term in parentheses must be at least $2$, so the largest possible values is $2-2=0 \Rightarrow \boxed{\textbf{B}}.$

Note that the maximum occurs when $a=b$.

-MistyMathMusic

## See Also

 2003 AMC 12A (Problems • Answer Key • Resources) Preceded byProblem 23 Followed byProblem 25 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. Invalid username
Login to AoPS