Difference between revisions of "2003 AMC 12A Problems/Problem 25"

m
m
Line 2: Line 2:
 
Let <math>\displaystyle f(x)= \sqrt{ax^2+bx} </math>.  For how many real values of <math>a</math> is there at least one positive value of <math> b </math> for which the domain of <math>f </math> and the range <math> f </math> are the same set?
 
Let <math>\displaystyle f(x)= \sqrt{ax^2+bx} </math>.  For how many real values of <math>a</math> is there at least one positive value of <math> b </math> for which the domain of <math>f </math> and the range <math> f </math> are the same set?
  
(A)0   (B) 1   (C) 2   (D) 3   (E) infinitely many
+
<math> \mathrm{(A) \ 0 } \qquad \mathrm{(B) \ 1 } \qquad \mathrm{(C) \ 2 } \qquad \mathrm{(D) \ 3 } \qquad \mathrm{(E) \ \mathrm{infinitely \ many} }  </math>
== Solution==
+
 
 +
== Solution==
 
{{solution}}
 
{{solution}}
  

Revision as of 16:29, 28 November 2006

Problem

Let $\displaystyle f(x)= \sqrt{ax^2+bx}$. For how many real values of $a$ is there at least one positive value of $b$ for which the domain of $f$ and the range $f$ are the same set?

$\mathrm{(A) \ 0 } \qquad \mathrm{(B) \ 1 } \qquad \mathrm{(C) \ 2 } \qquad \mathrm{(D) \ 3 } \qquad \mathrm{(E) \ \mathrm{infinitely \ many} }$

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See Also

Invalid username
Login to AoPS