Difference between revisions of "2003 AMC 12B Problems/Problem 20"

m (Solution 2)
(Solution)
Line 24: Line 24:
 
<cmath>a(x-1)(x+1)(x-n) = ax^3-anx^2-ax+an = ax^3 + bx^2 + cx + d = 0</cmath>
 
<cmath>a(x-1)(x+1)(x-n) = ax^3-anx^2-ax+an = ax^3 + bx^2 + cx + d = 0</cmath>
 
Notice that <math>f(0) = d = an = 2</math>, so <math>b = -an = -2 \Rightarrow \mathrm{(B)}</math>.
 
Notice that <math>f(0) = d = an = 2</math>, so <math>b = -an = -2 \Rightarrow \mathrm{(B)}</math>.
 +
 +
=== Solution 3 ===
 +
Notice that if <math>g(x) = 2 - 2x^2</math>, then <math>f - g</math> vanishes at <math>x = -1, 0, 1</math> and so
 +
<cmath>f(x) - g(x) = ax(x-1)(x+1) = ax^3 - ax</cmath>
 +
implies by <math>x^2</math> coefficient, <math>b + 2 = 0, b = -2 \rightarrow \mathrm{(B)}</math>.
  
 
== See also ==
 
== See also ==

Revision as of 17:19, 11 July 2016

Problem

Part of the graph of $f(x) = ax^3 + bx^2 + cx + d$ is shown. What is $b$?

2003 12B AMC-20.png

$\mathrm{(A)}\ -4 \qquad\mathrm{(B)}\ -2 \qquad\mathrm{(C)}\ 0 \qquad\mathrm{(D)}\ 2 \qquad\mathrm{(E)}\ 4$

Solution

Solution 1

Since \begin{align*} -f(-1) = a - b + c - d = 0 = f(1) = a + b + c + d \end{align*}

It follows that $b + d = 0$. Also, $d = f(0) = 2$, so $b = -2 \Rightarrow \mathrm{(B)}$.

Solution 2

Two of the roots of $f(x) = 0$ are $\pm 1$, and we let the third one be $n$. Then \[a(x-1)(x+1)(x-n) = ax^3-anx^2-ax+an = ax^3 + bx^2 + cx + d = 0\] Notice that $f(0) = d = an = 2$, so $b = -an = -2 \Rightarrow \mathrm{(B)}$.

Solution 3

Notice that if $g(x) = 2 - 2x^2$, then $f - g$ vanishes at $x = -1, 0, 1$ and so \[f(x) - g(x) = ax(x-1)(x+1) = ax^3 - ax\] implies by $x^2$ coefficient, $b + 2 = 0, b = -2 \rightarrow \mathrm{(B)}$.

See also

2003 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 19
Followed by
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png