Difference between revisions of "2003 USAMO Problems/Problem 5"

m (Resources)
m
Line 13: Line 13:
 
So <math>\sum \frac {(a + 3)^2}{2a^2 + (3 - a)^2} \le \sum \left(\frac {1}{3} + \frac {8a + 6}{6}\right) = 1 + \frac {8(a + b + c) + 18}{6} = 8</math>, as desired.
 
So <math>\sum \frac {(a + 3)^2}{2a^2 + (3 - a)^2} \le \sum \left(\frac {1}{3} + \frac {8a + 6}{6}\right) = 1 + \frac {8(a + b + c) + 18}{6} = 8</math>, as desired.
  
== Resources ==
 
  
* [[2003 USAMO Problems]]
+
== See also ==
* [http://www.artofproblemsolving.com/Forum/viewtopic.php?t=53672 Discussion on AOPS/MathLinks]
+
{{USAMO newbox|year=2003|num-b=4|num-a=6}}
* [http://www.mathlinks.ro/Forum/viewtopic.php?t=46 Discussion 2]
 
* [http://www.mathlinks.ro/Forum/viewtopic.php?t=28678 Discussion 3]
 
* [http://www.mathlinks.ro/Forum/viewtopic.php?t=43278 Discussion 4]
 
* [http://www.mathlinks.ro/Forum/viewtopic.php?t=48989 Discussion 5]
 
  
 
[[Category:Olympiad Algebra Problems]]
 
[[Category:Olympiad Algebra Problems]]
 
[[Category:Olympiad Inequality Problems]]
 
[[Category:Olympiad Inequality Problems]]

Revision as of 21:52, 6 April 2013

Problem

Let $a$, $b$, $c$ be positive real numbers. Prove that

$\dfrac{(2a + b + c)^2}{2a^2 + (b + c)^2} + \dfrac{(2b + c + a)^2}{2b^2 + (c + a)^2} + \dfrac{(2c + a + b)^2}{2c^2 + (a + b)^2} \le 8.$

Solution

Since all terms are homogeneous, we may assume WLOG that $a + b + c = 3$.

Then the LHS becomes $\sum \frac {(a + 3)^2}{2a^2 + (3 - a)^2} = \sum \frac {a^2 + 6a + 9}{3a^2 - 6a + 9} = \sum \left(\frac {1}{3} + \frac {8a + 6}{3a^2 - 6a + 9}\right)$.

Notice $3a^2 - 6a + 9 = 3(a - 1)^2 + 6 \ge 6$, so $\frac {8a + 6}{3a^2 - 6a + 9} \le \frac {8a + 6}{6}$.

So $\sum \frac {(a + 3)^2}{2a^2 + (3 - a)^2} \le \sum \left(\frac {1}{3} + \frac {8a + 6}{6}\right) = 1 + \frac {8(a + b + c) + 18}{6} = 8$, as desired.


See also

2003 USAMO (ProblemsResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6
All USAMO Problems and Solutions