2004 AIME I Problems/Problem 2

Revision as of 12:26, 27 April 2008 by Azjps (talk | contribs) (box fmt etc)

Problem

Set $A$ consists of $m$ consecutive integers whose sum is $2m,$and set $B$ consists of $2m$ consecutive integers whose sum is $m.$ The absolute value of the difference between the greatest element of $A$ and the greatest element of $B$ is $99$. Find $m.$

Solution

Let us give the elements of our sets names: $A = \{x, x + 1, x + 2, \ldots, x + m - 1\}$ and $B = \{y, y + 1, \ldots, y + 2m - 1\}$. So we are given that \[2m = x + (x + 1) + \ldots + (x + m - 1) = mx + (1 + 2 + \ldots + (m - 1)) = mx + \frac{m(m -1)}2,\] so $2 = x + \frac{m - 1}2$ and $x + (m - 1) = \frac{m + 3}2$. Also, \[m = y + (y + 1) + \ldots + (y + 2m - 1) = 2my + \frac{2m(2m - 1)}2,\] so $1 = 2y + (2m - 1)$ so $2m = 2(y + 2m - 1)$ and $m = y + 2m - 1$.

Then by the given, $99 = |(x + m - 1) - (y + 2m - 1)| = \left|\frac{m + 3}2 - m\right| = \left|\frac{m - 3}2\right|$. $m$ is a positive integer so we must have $99 = \frac{m - 3}2$ and so $m = \boxed{201}$.

See also

2004 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions