Difference between revisions of "2004 AMC 10A Problems/Problem 15"

(Solution)
m (+box)
Line 1: Line 1:
 
==Problem==
 
==Problem==
Given that <math>-4\leq x\leq-2</math> and <math>2\leq y\leq4</math>, what is the largest possible value of (x+y)/x?
+
Given that <math>-4\leq x\leq-2</math> and <math>2\leq y\leq4</math>, what is the largest possible value of <math>\frac{x+y}{x}</math>?
  
 
<math> \mathrm{(A) \ } -1 \qquad \mathrm{(B) \ } -\frac12 \qquad \mathrm{(C) \ } 0 \qquad \mathrm{(D) \ } \frac12 \qquad \mathrm{(E) \ } 1  </math>
 
<math> \mathrm{(A) \ } -1 \qquad \mathrm{(B) \ } -\frac12 \qquad \mathrm{(C) \ } 0 \qquad \mathrm{(D) \ } \frac12 \qquad \mathrm{(E) \ } 1  </math>
Line 13: Line 13:
 
This occurs at (-4,2), so <math>\frac{x+y}x=1-\frac12=\frac12\Rightarrow \mathrm{(D)}</math>.
 
This occurs at (-4,2), so <math>\frac{x+y}x=1-\frac12=\frac12\Rightarrow \mathrm{(D)}</math>.
  
==See Also==
+
==See also==
 
+
{{AMC10 box|year=2004|ab=A|num-b=14|num-a=16}}
*[[2004 AMC 10A Problems]]
 
 
 
*[[2004 AMC 10A Problems/Problem 14|Previous Problem]]
 
 
 
*[[2004 AMC 10A Problems/Problem 16|Next Problem]]
 
  
 
[[Category:Introductory Algebra Problems]]
 
[[Category:Introductory Algebra Problems]]

Revision as of 21:00, 28 February 2007

Problem

Given that $-4\leq x\leq-2$ and $2\leq y\leq4$, what is the largest possible value of $\frac{x+y}{x}$?

$\mathrm{(A) \ } -1 \qquad \mathrm{(B) \ } -\frac12 \qquad \mathrm{(C) \ } 0 \qquad \mathrm{(D) \ } \frac12 \qquad \mathrm{(E) \ } 1$

Solution

Rewrite $\frac{(x+y)}x$ as $\frac{x}x+\frac{y}x=1+\frac{y}x$.

We also know that $\frac{y}x<0$ because $x$ and $y$ are of opposite sign.

Therefore, $1+\frac{y}x$ is maximized when $\frac{y}x$ is minimized, which occurs when $|x|$ is the largest and $|y|$ is the smallest.

This occurs at (-4,2), so $\frac{x+y}x=1-\frac12=\frac12\Rightarrow \mathrm{(D)}$.

See also

2004 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions