Difference between revisions of "2004 AMC 10A Problems/Problem 20"

m (Solution 3)
m (See also)
Line 14: Line 14:
 
<cmath>\frac{\frac{x^2}{2}}{\frac{1-x}{2}} = \frac{x^2}{1 - x} = \boxed{\text{(D) }2}.</cmath>
 
<cmath>\frac{\frac{x^2}{2}}{\frac{1-x}{2}} = \frac{x^2}{1 - x} = \boxed{\text{(D) }2}.</cmath>
  
==See also==
+
==Solution 3==
*[http://www.artofproblemsolving.com/Forum/viewtopic.php?t=131332 AoPS topic]
+
Hi
{{AMC10 box|year=2004|ab=A|num-b=19|num-a=21}}
 
 
 
[[Category:Introductory Geometry Problems]]
 
[[Category:Area Ratio Problems]]
 
{{MAA Notice}}
 

Revision as of 02:42, 11 April 2020

Problem

Points $E$ and $F$ are located on square $ABCD$ so that $\triangle BEF$ is equilateral. What is the ratio of the area of $\triangle DEF$ to that of $\triangle ABE$?

AMC10 2004A 20.png

$\mathrm{(A) \ } \frac{4}{3} \qquad \mathrm{(B) \ } \frac{3}{2} \qquad \mathrm{(C) \ } \sqrt{3} \qquad \mathrm{(D) \ } 2 \qquad \mathrm{(E) \ } 1+\sqrt{3}$

Solution 1

Since triangle $BEF$ is equilateral, $EA=FC$, and $EAB$ and $FCB$ are $SAS$ congruent. Thus, triangle $DEF$ is an isosceles right triangle. So we let $DE=x$. Thus $EF=EB=FB=x\sqrt{2}$. If we go angle chasing, we find out that $\angle AEB=75^{\circ}$, thus $\angle ABE=15^{\circ}$. $\frac{AE}{EB}=\sin{15^{\circ}}=\frac{\sqrt{6}-\sqrt{2}}{4}$. Thus $\frac{AE}{x\sqrt{2}}=\frac{\sqrt{6}-\sqrt{2}}{4}$, or $AE=\frac{x(\sqrt{3}-1)}{2}$. Thus $AB=\frac{x(\sqrt{3}+1)}{2}$, and $[ABE]=\frac{x^2}{4}$, and $[DEF]=\frac{x^2}{2}$. Thus the ratio of the areas is $\boxed{\mathrm{(D)}\ 2}$

Solution 2 (Non-trig)

WLOG, let the side length of $ABCD$ be 1. Let $DE = x$. It suffices that $AE = 1 - x$. Then triangles $ABE$ and $CBF$ are congruent by HL, so $CF = AE$ and $DE = DF$. We find that $BE = EF = x \sqrt{2}$, and so, by the Pythagorean Theorem, we have $(1 - x)^2 + 1 = 2x^2.$ This yields $x^2 + 2x = 2$, so $x^2 = 2 - 2x$. Thus, the desired ratio of areas is \[\frac{\frac{x^2}{2}}{\frac{1-x}{2}} = \frac{x^2}{1 - x} = \boxed{\text{(D) }2}.\]

Solution 3

Hi