Difference between revisions of "2004 AMC 10B Problems/Problem 18"

(Solution)
m (Solution 1)
Line 31: Line 31:
 
==Solution 1==
 
==Solution 1==
  
Let <math>x = [DBF]</math>. Because <math>\triangleACE</math> is divided into four triangles, <math>[ACE] = [BCD] + [ABF] + [DEF] + x</math>.
+
Let <math>x = [DBF]</math>. Because <math>\triangle ACE</math> is divided into four triangles, <math>[ACE] = [BCD] + [ABF] + [DEF] + x</math>.
Because the area of <math>\triangleXYZ = \frac12 XY \cdot XZ \cdot sin(\angle X), \frac12 12 \cdot 16 = \frac12 9 \cdot 4 + \frac12 3 \cdot 15 \cdot sin(\angle A) + \frac12 5 \cdot 12 \cdot sin(\angle E) + x</math>.
+
 
<math>sin(\angle A) = 16 / 20</math> and <math>sin(\angle E) = 12 / 20</math>, so <math>96 = 18 + 18 + 18 + x</math>.
+
Because the area of <math>\triangleXYZ = \frac12 \cdot XY \cdot XZ \cdot sin(\angle X), \frac12 \cdot 12 \cdot 16 = \frac12 \cdot 9 \cdot 4 + \frac12 \cdot 3 \cdot 15 \cdot</math> sin<math>(\angle A) + \frac12 \cdot 5 \cdot 12 \cdot</math> sin<math>(\angle E) + x</math>.
<math>x = 42</math>, so <math>[DBF] / [ACE] = 42 / 96 = 7 / 16 \Rightarrow \boxed{\frac 7{16}}</math>.
+
 
 +
sin<math>(\angle A) = \frac{16}{20}</math> and sin<math>(\angle E) = \frac{12}{20}</math>, so <math>96 = 18 + 18 + 18 + x</math>.
 +
 
 +
<math>x = 42</math>, so <math>\frac{[DBF]}{[ACE]} = frac{42}{96} = \boxed{\frac 7{16}}</math>.
  
 
==Solution 2==
 
==Solution 2==

Revision as of 22:25, 24 January 2015

Problem

In the right triangle $\triangle ACE$, we have $AC=12$, $CE=16$, and $EA=20$. Points $B$, $D$, and $F$ are located on $AC$, $CE$, and $EA$, respectively, so that $AB=3$, $CD=4$, and $EF=5$. What is the ratio of the area of $\triangle DBF$ to that of $\triangle ACE$?

$\mathrm{(A) \ } \frac{1}{4} \qquad \mathrm{(B) \ } \frac{9}{25} \qquad \mathrm{(C) \ } \frac{3}{8} \qquad \mathrm{(D) \ } \frac{11}{25} \qquad \mathrm{(E) \ } \frac{7}{16}$


[asy] unitsize(0.5cm); defaultpen(0.8); pair C=(0,0), A=(0,12), E=(20,0); draw(A--C--E--cycle); pair B=A + 3*(C-A)/length(C-A); pair D=C + 4*(E-C)/length(E-C); pair F=E + 5*(A-E)/length(A-E); draw(B--D--F--cycle); label("$A$",A,N); label("$B$",B,W); label("$C$",C,SW); label("$D$",D,S); label("$E$",E,SE); label("$F$",F,NE); label("$3$",A--B,W); label("$9$",C--B,W); label("$4$",C--D,S); label("$12$",D--E,S); label("$5$",E--F,NE); label("$15$",F--A,NE); [/asy]

Solution 1

Let $x = [DBF]$. Because $\triangle ACE$ is divided into four triangles, $[ACE] = [BCD] + [ABF] + [DEF] + x$.

Because the area of $\triangleXYZ = \frac12 \cdot XY \cdot XZ \cdot sin(\angle X), \frac12 \cdot 12 \cdot 16 = \frac12 \cdot 9 \cdot 4 + \frac12 \cdot 3 \cdot 15 \cdot$ (Error compiling LaTeX. Unknown error_msg) sin$(\angle A) + \frac12 \cdot 5 \cdot 12 \cdot$ sin$(\angle E) + x$.

sin$(\angle A) = \frac{16}{20}$ and sin$(\angle E) = \frac{12}{20}$, so $96 = 18 + 18 + 18 + x$.

$x = 42$, so $\frac{[DBF]}{[ACE]} = frac{42}{96} = \boxed{\frac 7{16}}$.

Solution 2

First of all, note that $\frac{AB}{AC} = \frac{CD}{CE} = \frac{EF}{EA} = \frac 14$, and therefore $\frac{BC}{AC} = \frac{DE}{CE} = \frac{FA}{EA} = \frac 34$.

Draw the height from $F$ onto $AB$ as in the picture below:

[asy] unitsize(0.5cm); defaultpen(0.8); pair C=(0,0), A=(0,12), E=(20,0); draw(A--C--E--cycle); pair B=A + 3*(C-A)/length(C-A); pair D=C + 4*(E-C)/length(E-C); pair F=E + 5*(A-E)/length(A-E); draw(B--D--F--cycle); label("$A$",A,N); label("$B$",B,W); label("$C$",C,SW); label("$D$",D,S); label("$E$",E,SE); label("$F$",F,NE); label("$3$",A--B,W); label("$9$",0.5*C + 0.5*B,4*W); label("$4$",C--D,S); label("$12$",D--E,S); label("$5$",E--F,NE); label("$15$",F--A,NE);  pair G = intersectionpoint(F -- (F-(100,0)), A--C); draw(F--G, dashed); label("$G$",G,W); [/asy]

Now consider the area of $\triangle ABF$. Clearly the triangles $\triangle AFG$ and $\triangle AEC$ are similar, as they have all angles equal. Their ratio is $\frac {AF}{AE} = \frac 34$, hence $FG = \frac 34 \cdot CE$. Now the area $S_{ABF}$ of $\triangle ABF$ can be computed as $S_{ABF} = \frac 12 \cdot AB \cdot FG$ = $\frac 12 \cdot \left( \frac 14 \cdot AC \right) \cdot \left( \frac 34 \cdot EC \right) = \frac 14 \cdot \frac 34 \cdot S_{ACE}$.

Similarly we can find that $S_{BCD} = S_{DEF} = \frac 3{16}\cdot S_{ACE}$ as well.

Hence $S_{BDF} = S_{ACE} - 3\cdot\left( \frac 3{16} \cdot S_{ACE} \right) = \frac 7{16} \cdot S_{ACE}$, and the answer is $\frac{S_{BDF}}{S_{ACE}} = \boxed{\frac 7{16}}$.

See also

2004 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png