# Difference between revisions of "2004 AMC 10B Problems/Problem 24"

(Created page with 'In triangle <math>ABC</math> we have <math>AB=7</math>, <math>AC=8</math>, <math>BC=9</math>. Point <math>D</math> is on the circumscribed circle of the triangle so that <math>AD…') |
|||

Line 1: | Line 1: | ||

In triangle <math>ABC</math> we have <math>AB=7</math>, <math>AC=8</math>, <math>BC=9</math>. Point <math>D</math> is on the circumscribed circle of the triangle so that <math>AD</math> bisects angle <math>BAC</math>. What is the value of <math>AD/CD</math>? | In triangle <math>ABC</math> we have <math>AB=7</math>, <math>AC=8</math>, <math>BC=9</math>. Point <math>D</math> is on the circumscribed circle of the triangle so that <math>AD</math> bisects angle <math>BAC</math>. What is the value of <math>AD/CD</math>? | ||

− | A. 9/8 | + | <math>A. \dfrac{9/8} </math> |

− | B. 5/3 | + | <math>B. \dfrac{5/3} </math> |

− | C. 2 | + | <math>C. 2 </math> |

− | D. 17/7 | + | <math>D. \dfrac{17/7} </math> |

− | E. 5/2 | + | <math>E. \dfrac{5/2}</math> |

## Revision as of 00:40, 16 January 2010

In triangle we have , , . Point is on the circumscribed circle of the triangle so that bisects angle . What is the value of ? $A. \dfrac{9/8}$ (Error compiling LaTeX. ! Missing } inserted.) $B. \dfrac{5/3}$ (Error compiling LaTeX. ! Missing } inserted.) $D. \dfrac{17/7}$ (Error compiling LaTeX. ! Missing } inserted.) $E. \dfrac{5/2}$ (Error compiling LaTeX. ! Missing } inserted.)