Difference between revisions of "2004 AMC 10B Problems/Problem 24"

(Created page with 'In triangle <math>ABC</math> we have <math>AB=7</math>, <math>AC=8</math>, <math>BC=9</math>. Point <math>D</math> is on the circumscribed circle of the triangle so that <math>AD…')
 
Line 1: Line 1:
 
In triangle <math>ABC</math> we have <math>AB=7</math>, <math>AC=8</math>, <math>BC=9</math>. Point <math>D</math> is on the circumscribed circle of the triangle so that <math>AD</math> bisects angle <math>BAC</math>. What is the value of <math>AD/CD</math>?  
 
In triangle <math>ABC</math> we have <math>AB=7</math>, <math>AC=8</math>, <math>BC=9</math>. Point <math>D</math> is on the circumscribed circle of the triangle so that <math>AD</math> bisects angle <math>BAC</math>. What is the value of <math>AD/CD</math>?  
A. 9/8  
+
<math>A. \dfrac{9/8} </math>
B. 5/3  
+
<math>B. \dfrac{5/3} </math>
C. 2  
+
<math>C. 2 </math>
D. 17/7  
+
<math>D. \dfrac{17/7} </math>
E. 5/2
+
<math>E. \dfrac{5/2}</math>

Revision as of 00:40, 16 January 2010

In triangle $ABC$ we have $AB=7$, $AC=8$, $BC=9$. Point $D$ is on the circumscribed circle of the triangle so that $AD$ bisects angle $BAC$. What is the value of $AD/CD$? $A. \dfrac{9/8}$ (Error compiling LaTeX. ! Missing } inserted.) $B. \dfrac{5/3}$ (Error compiling LaTeX. ! Missing } inserted.) $C. 2$ $D. \dfrac{17/7}$ (Error compiling LaTeX. ! Missing } inserted.) $E. \dfrac{5/2}$ (Error compiling LaTeX. ! Missing } inserted.)

Invalid username
Login to AoPS