Difference between revisions of "2004 AMC 10B Problems/Problem 24"

m (Solution 1)
m (Added 'Problem' to the top)
Line 1: Line 1:
 +
==Problem==
 
In triangle <math>ABC</math> we have <math>AB=7</math>, <math>AC=8</math>, <math>BC=9</math>. Point <math>D</math> is on the circumscribed circle of the triangle so that <math>AD</math> bisects angle <math>BAC</math>. What is the value of <math>AD/CD</math>?  
 
In triangle <math>ABC</math> we have <math>AB=7</math>, <math>AC=8</math>, <math>BC=9</math>. Point <math>D</math> is on the circumscribed circle of the triangle so that <math>AD</math> bisects angle <math>BAC</math>. What is the value of <math>AD/CD</math>?  
  

Revision as of 02:15, 5 December 2019

Problem

In triangle $ABC$ we have $AB=7$, $AC=8$, $BC=9$. Point $D$ is on the circumscribed circle of the triangle so that $AD$ bisects angle $BAC$. What is the value of $AD/CD$?

$\text{(A) } \dfrac{9}{8} \quad \text{(B) } \dfrac{5}{3} \quad \text{(C) } 2 \quad \text{(D) } \dfrac{17}{7} \quad \text{(E) } \dfrac{5}{2}$


Solution 1

Set $\overline{BD}$'s length as $x$. $\overline{CD}$'s length must also be $x$ since $\angle BAD$ and $\angle DAC$ intercept arcs of equal length (because $\angle BAD=\angle DAC$). Using Ptolemy's Theorem, $7x+8x=9(AD)$. The ratio is $\frac{5}{3}\implies\boxed{\text{(B)}}$

Solution 2

[asy] import graph; import geometry; import markers;  unitsize(0.5 cm);  pair A, B, C, D, E, I;  A = (11/3,8*sqrt(5)/3); B = (0,0); C = (9,0); I = incenter(A,B,C); D = intersectionpoint(I--(I + 2*(I - A)), circumcircle(A,B,C)); E = extension(A,D,B,C);  draw(A--B--C--cycle); draw(circumcircle(A,B,C)); draw(D--A); draw(D--B); draw(D--C);  label("$A$", A, N); label("$B$", B, SW); label("$C$", C, SE); label("$D$", D, S); label("$E$", E, NE);  markangle(radius = 20,B, A, C, marker(markinterval(2,stickframe(1,2mm),true))); markangle(radius = 20,B, C, D, marker(markinterval(1,stickframe(1,2mm),true))); markangle(radius = 20,D, B, C, marker(markinterval(1,stickframe(1,2mm),true))); markangle(radius = 20,C, B, A, marker(markinterval(1,stickframe(2,2mm),true))); markangle(radius = 20,C, D, A, marker(markinterval(1,stickframe(2,2mm),true))); [/asy] Let $E = \overline{BC}\cap \overline{AD}$. Observe that $\angle ABC \cong \angle ADC$ because they subtend the same arc, $\overarc{AC}$. Furthermore, $\angle BAE \cong \angle EAC$ because $\overline{AE}$ is an angle bisector, so $\triangle ABE \sim \triangle ADC$ by $\text{AA}$ similarity. Then $\dfrac{AD}{AB} = \dfrac{CD}{BE}$. By the Angle Bisector Theorem, $\dfrac{7}{BE} = \dfrac{8}{CE}$, so $\dfrac{7}{BE} = \dfrac{8}{9-BE}$. This in turn gives $BE = \frac{21}{5}$. Plugging this into the similarity proportion gives: $\dfrac{AD}{7} = \dfrac{CD}{\dfrac{21}{5}} \implies \dfrac{AD}{CD} = {\dfrac{5}{3}} = \boxed{\text{(B)}}$.

See Also

2004 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png