2004 AMC 12A Problems/Problem 19

Revision as of 16:28, 26 February 2008 by Chickendude (talk | contribs) (Added Box template for "see also")

Problem 19

Circles $A, B$ and $C$ are externally tangent to each other, and internally tangent to circle $D$. Circles $B$ and $C$ are congruent. Circle $A$ has radius $1$ and passes through the center of $D$. What is the radius of circle $B$?

$\text {(A)} \frac23 \qquad \text {(B)} \frac {\sqrt3}{2} \qquad \text {(C)}\frac78 \qquad \text {(D)}\frac89 \qquad \text {(E)}\frac {1 + \sqrt3}{3}$

Solution

[asy] unitsize(20mm); pair A=(0,1),B=(-8/9,-2/3),C=(8/9,-2/3),D=(0,0), E=(0,-2/3);  draw(Circle(D,2)); draw(Circle(A,1)); draw(Circle(B,8/9)); draw(Circle(C,8/9)); draw(A--B--C--A); draw(B--D--C); draw(A--E);  dot(A);dot(B);dot(C);dot(D);dot(E);  label("\(D\)", D,N); label("\(A\)", A,N); label("\(B\)", B,W); label("\(C\)", C,E); label("\(E\)", E,S); label("\(1\)",(-.4,.7)); label("\(1\)",(0,.5),E); label("\(r\)", (-.8,-.1)); label("\(r\)", (-4/9,-2/3),S); label("\(h\)", (0,-1/3),E); [/asy]

Note that $BD= 2-r$ since D is the center of the larger circle of radius 2

Using the Pythagorean Theorem on $\triangle BDE$

$r^2 + h^2 = (2-r)^2$

$r^2 + h^2 = 4 - 4r + r^2$

$h^2 = 4 - 4r$

$h = 2\sqrt{1-r}$

Now Using the pythagorean theorem on $\triangle BAE$

$r^2 + (h+1)^2 = (r+1)^2$

$r^2 + h^2 + 2h + 1 = r^2 + 2r + 1$

$h^2 + 2h = 2r$

Substituting $h$ in

$(4-4r) + 4\sqrt{1-r} = 2r$

$4\sqrt{1-r} = 6r - 4$

$16-16r = 36r^2 - 48r + 16$

$0 = 36r^2 - 32r$

$r = \frac{32}{36} = \frac{8}{9} \Rightarrow \qquad \textbf{(D)}$

See Also

2004 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions