Difference between revisions of "2004 AMC 12A Problems/Problem 8"

m (minor edit)
(Solution 3)
Line 42: Line 42:
 
<math>[\triangle ADE]-[\triangle BDC]=[\triangle BEA]-[\triangle BCA]=\frac{1}{2}\times8\times4-\frac{1}{2}\times6\times4= 16-12=4\Rightarrow\boxed{\mathrm{(B)}\ 4}</math>
 
<math>[\triangle ADE]-[\triangle BDC]=[\triangle BEA]-[\triangle BCA]=\frac{1}{2}\times8\times4-\frac{1}{2}\times6\times4= 16-12=4\Rightarrow\boxed{\mathrm{(B)}\ 4}</math>
  
=== Solution 3 ===
+
=== Solution 3 (coordbash)===
 
Put figure <math>ABCDE</math> on a graph. <math>\overline{AC}</math> goes from (0, 0) to (4, 6) and <math>\overline{BE}</math> goes from (4, 0) to (0, 8). <math>\overline{AC}</math> is on line <math>y = 1.5x</math>. <math>\overline{BE}</math> is on line <math>y = -2x + 8</math>. Finding intersection between these points,
 
Put figure <math>ABCDE</math> on a graph. <math>\overline{AC}</math> goes from (0, 0) to (4, 6) and <math>\overline{BE}</math> goes from (4, 0) to (0, 8). <math>\overline{AC}</math> is on line <math>y = 1.5x</math>. <math>\overline{BE}</math> is on line <math>y = -2x + 8</math>. Finding intersection between these points,
  

Revision as of 21:41, 4 November 2020

The following problem is from both the 2004 AMC 12A #8 and 2004 AMC 10A #9, so both problems redirect to this page.

Problem

In the overlapping triangles $\triangle{ABC}$ and $\triangle{ABE}$ sharing common side $AB$, $\angle{EAB}$ and $\angle{ABC}$ are right angles, $AB=4$, $BC=6$, $AE=8$, and $\overline{AC}$ and $\overline{BE}$ intersect at $D$. What is the difference between the areas of $\triangle{ADE}$ and $\triangle{BDC}$?

[asy] size(150); defaultpen(linewidth(0.4)); //Variable Declarations pair A, B, C, D, E;  //Variable Definitions A=(0, 0); B=(4, 0); C=(4, 6); E=(0, 8); D=extension(A,C,B,E);  //Initial Diagram draw(A--B--C--A--E--B); label("$A$",A,SW); label("$B$",B,SE); label("$C$",C,NE); label("$D$",D,3N); label("$E$",E,NW);  //Side labels label("$4$",A--B,S); label("$8$",A--E,W); label("$6$",B--C,ENE); [/asy]

$\mathrm {(A)}\ 2 \qquad \mathrm {(B)}\ 4 \qquad \mathrm {(C)}\ 5 \qquad \mathrm {(D)}\ 8 \qquad \mathrm {(E)}\ 9 \qquad$

Solutions

Solution 1

Since $AE \perp AB$ and $BC \perp AB$, $AE \parallel BC$. By alternate interior angles and $AA\sim$, we find that $\triangle ADE \sim \triangle CDB$, with side length ratio $\frac{4}{3}$. Their heights also have the same ratio, and since the two heights add up to $4$, we have that $h_{ADE} = 4 \cdot \frac{4}{7} = \frac{16}{7}$ and $h_{CDB} = 3 \cdot \frac 47 = \frac {12}7$. Subtracting the areas, $\frac{1}{2} \cdot 8 \cdot \frac {16}7 - \frac 12 \cdot 6 \cdot \frac{12}7 = 4$ $\Rightarrow$ $\boxed{\mathrm{(B)}\ 4}$.

Solution 2

Let $[X]$ represent the area of figure $X$. Note that $[\triangle BEA]=[\triangle ABD]+[\triangle ADE]$ and $[\triangle BCA]=[\triangle ABD]+[\triangle BDC]$.

$[\triangle ADE]-[\triangle BDC]=[\triangle BEA]-[\triangle BCA]=\frac{1}{2}\times8\times4-\frac{1}{2}\times6\times4= 16-12=4\Rightarrow\boxed{\mathrm{(B)}\ 4}$

Solution 3 (coordbash)

Put figure $ABCDE$ on a graph. $\overline{AC}$ goes from (0, 0) to (4, 6) and $\overline{BE}$ goes from (4, 0) to (0, 8). $\overline{AC}$ is on line $y = 1.5x$. $\overline{BE}$ is on line $y = -2x + 8$. Finding intersection between these points,

$1.5x = -2x + 8$.

$3.5x = 8$

$x = 8 \times \frac{2}{7}$

$= \frac{16}{7}$

This gives us the x-coordinate of D. So, $\frac{16}{7}$ is the height of $\triangle ADE$, then area of $\triangle ADE$ is $\frac{16}{7} \times 8 \times \frac{1}{2}$ $= \frac{64}{7}$

Now, the height of $\triangle BDC$ is $4-\frac{16}{7} = \frac{12}{7}$ And the area of $\triangle BDC$ is $6 \times \frac{12}{7} \times \frac{1}{2} = \frac{36}{7}$

This gives us $\frac{64}{7} - \frac{36}{7} = 4$

Therefore, the difference is $4$

See also

2004 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions
2004 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png