Difference between revisions of "2004 AMC 12A Problems/Problem 8"
m (→Solution 2) |
m (Replaced diagram with Asymptote) |
||
Line 3: | Line 3: | ||
In the overlapping [[triangle]]s <math>\triangle{ABC}</math> and <math>\triangle{ABE}</math> sharing common [[edge | side]] <math>AB</math>, <math>\angle{EAB}</math> and <math>\angle{ABC}</math> are [[right angle]]s, <math>AB=4</math>, <math>BC=6</math>, <math>AE=8</math>, and <math>\overline{AC}</math> and <math>\overline{BE}</math> intersect at <math>D</math>. What is the difference between the areas of <math>\triangle{ADE}</math> and <math>\triangle{BDC}</math>? | In the overlapping [[triangle]]s <math>\triangle{ABC}</math> and <math>\triangle{ABE}</math> sharing common [[edge | side]] <math>AB</math>, <math>\angle{EAB}</math> and <math>\angle{ABC}</math> are [[right angle]]s, <math>AB=4</math>, <math>BC=6</math>, <math>AE=8</math>, and <math>\overline{AC}</math> and <math>\overline{BE}</math> intersect at <math>D</math>. What is the difference between the areas of <math>\triangle{ADE}</math> and <math>\triangle{BDC}</math>? | ||
− | + | <asy> | |
+ | size(150); | ||
+ | defaultpen(linewidth(0.4)); | ||
+ | //Variable Declarations | ||
+ | pair A, B, C, D, E; | ||
+ | |||
+ | //Variable Definitions | ||
+ | A=(0, 0); | ||
+ | B=(4, 0); | ||
+ | C=(4, 6); | ||
+ | E=(0, 8); | ||
+ | D=extension(A,C,B,E); | ||
+ | |||
+ | //Initial Diagram | ||
+ | draw(A--B--C--A--E--B); | ||
+ | label("$A$",A,SW); | ||
+ | label("$B$",B,SE); | ||
+ | label("$C$",C,NE); | ||
+ | label("$D$",D,3N); | ||
+ | label("$E$",E,NW); | ||
+ | |||
+ | //Side labels | ||
+ | label("$4$",A--B,S); | ||
+ | label("$8$",A--E,W); | ||
+ | label("$6$",B--C,ENE); | ||
+ | </asy> | ||
<math>\mathrm {(A)}\ 2 \qquad \mathrm {(B)}\ 4 \qquad \mathrm {(C)}\ 5 \qquad \mathrm {(D)}\ 8 \qquad \mathrm {(E)}\ 9 \qquad</math> | <math>\mathrm {(A)}\ 2 \qquad \mathrm {(B)}\ 4 \qquad \mathrm {(C)}\ 5 \qquad \mathrm {(D)}\ 8 \qquad \mathrm {(E)}\ 9 \qquad</math> | ||
__TOC__ | __TOC__ | ||
+ | |||
== Solution 1 == | == Solution 1 == | ||
Revision as of 12:13, 5 February 2016
- The following problem is from both the 2004 AMC 12A #8 and 2004 AMC 10A #9, so both problems redirect to this page.
Problem
In the overlapping triangles and sharing common side , and are right angles, , , , and and intersect at . What is the difference between the areas of and ?
Contents
Solution 1
Since and , . By alternate interior angles and , we find that , with side length ratio . Their heights also have the same ratio, and since the two heights add up to , we have that and . Subtracting the areas, .
Solution 2
Let represent the area of figure . Note that and .
See also
2004 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 7 |
Followed by Problem 9 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
2004 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 8 |
Followed by Problem 10 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.