Difference between revisions of "2004 AMC 12A Problems/Problem 8"

m (Solution 2)
m (Replaced diagram with Asymptote)
Line 3: Line 3:
 
In the overlapping [[triangle]]s <math>\triangle{ABC}</math> and <math>\triangle{ABE}</math> sharing common [[edge | side]] <math>AB</math>, <math>\angle{EAB}</math> and <math>\angle{ABC}</math> are [[right angle]]s, <math>AB=4</math>, <math>BC=6</math>, <math>AE=8</math>, and <math>\overline{AC}</math> and <math>\overline{BE}</math> intersect at <math>D</math>. What is the difference between the areas of <math>\triangle{ADE}</math> and <math>\triangle{BDC}</math>?  
 
In the overlapping [[triangle]]s <math>\triangle{ABC}</math> and <math>\triangle{ABE}</math> sharing common [[edge | side]] <math>AB</math>, <math>\angle{EAB}</math> and <math>\angle{ABC}</math> are [[right angle]]s, <math>AB=4</math>, <math>BC=6</math>, <math>AE=8</math>, and <math>\overline{AC}</math> and <math>\overline{BE}</math> intersect at <math>D</math>. What is the difference between the areas of <math>\triangle{ADE}</math> and <math>\triangle{BDC}</math>?  
  
[[Image:AMC10_2004A_9.gif|center]]
+
<asy>
 +
size(150);
 +
defaultpen(linewidth(0.4));
 +
//Variable Declarations
 +
pair A, B, C, D, E;
 +
 
 +
//Variable Definitions
 +
A=(0, 0);
 +
B=(4, 0);
 +
C=(4, 6);
 +
E=(0, 8);
 +
D=extension(A,C,B,E);
 +
 
 +
//Initial Diagram
 +
draw(A--B--C--A--E--B);
 +
label("$A$",A,SW);
 +
label("$B$",B,SE);
 +
label("$C$",C,NE);
 +
label("$D$",D,3N);
 +
label("$E$",E,NW);
 +
 
 +
//Side labels
 +
label("$4$",A--B,S);
 +
label("$8$",A--E,W);
 +
label("$6$",B--C,ENE);
 +
</asy>
  
 
<math>\mathrm {(A)}\ 2 \qquad \mathrm {(B)}\ 4 \qquad \mathrm {(C)}\ 5 \qquad \mathrm {(D)}\ 8 \qquad \mathrm {(E)}\ 9 \qquad</math>
 
<math>\mathrm {(A)}\ 2 \qquad \mathrm {(B)}\ 4 \qquad \mathrm {(C)}\ 5 \qquad \mathrm {(D)}\ 8 \qquad \mathrm {(E)}\ 9 \qquad</math>
  
 
__TOC__
 
__TOC__
 +
 
== Solution 1 ==
 
== Solution 1 ==
  

Revision as of 12:13, 5 February 2016

The following problem is from both the 2004 AMC 12A #8 and 2004 AMC 10A #9, so both problems redirect to this page.

Problem

In the overlapping triangles $\triangle{ABC}$ and $\triangle{ABE}$ sharing common side $AB$, $\angle{EAB}$ and $\angle{ABC}$ are right angles, $AB=4$, $BC=6$, $AE=8$, and $\overline{AC}$ and $\overline{BE}$ intersect at $D$. What is the difference between the areas of $\triangle{ADE}$ and $\triangle{BDC}$?

[asy] size(150); defaultpen(linewidth(0.4)); //Variable Declarations pair A, B, C, D, E;  //Variable Definitions A=(0, 0); B=(4, 0); C=(4, 6); E=(0, 8); D=extension(A,C,B,E);  //Initial Diagram draw(A--B--C--A--E--B); label("$A$",A,SW); label("$B$",B,SE); label("$C$",C,NE); label("$D$",D,3N); label("$E$",E,NW);  //Side labels label("$4$",A--B,S); label("$8$",A--E,W); label("$6$",B--C,ENE); [/asy]

$\mathrm {(A)}\ 2 \qquad \mathrm {(B)}\ 4 \qquad \mathrm {(C)}\ 5 \qquad \mathrm {(D)}\ 8 \qquad \mathrm {(E)}\ 9 \qquad$

Solution 1

Since $AE \perp AB$ and $BC \perp AB$, $AE \parallel BC$. By alternate interior angles and $AA\sim$, we find that $\triangle ADE \sim \triangle CDB$, with side length ratio $\frac{4}{3}$. Their heights also have the same ratio, and since the two heights add up to $4$, we have that $h_{ADE} = 4 \cdot \frac{4}{7} = \frac{16}{7}$ and $h_{CDB} = 3 \cdot \frac 47 = \frac {12}7$. Subtracting the areas, $\frac{1}{2} \cdot 8 \cdot \frac {16}7 - \frac 12 \cdot 6 \cdot \frac{12}7 = 4$ $\Rightarrow$ $\boxed{\mathrm{(B)}\ 4}$.

Solution 2

Let $[X]$ represent the area of figure $X$. Note that $[\triangle BEA]=[\triangle ABD]+[\triangle ADE]$ and $[\triangle BCA]=[\triangle ABD]+[\triangle BDC]$.

$[\triangle ADE]-[\triangle BDC]=[\triangle BEA]-[\triangle BCA]=\frac{1}{2}\times8\times4-\frac{1}{2}\times6\times4= 16-12=4\Rightarrow\boxed{\mathrm{(B)}\ 4}$

See also

2004 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions
2004 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS