Difference between revisions of "2004 AMC 12B Problems/Problem 16"

(solution)
 
(See also)
Line 15: Line 15:
  
 
[[Category:Introductory Algebra Problems]]
 
[[Category:Introductory Algebra Problems]]
 +
{{MAA Notice}}

Revision as of 19:58, 3 July 2013

Problem

A function $f$ is defined by $f(z) = i\overline{z}$, where $i=\sqrt{-1}$ and $\overline{z}$ is the complex conjugate of $z$. How many values of $z$ satisfy both $|z| = 5$ and $f(z) = z$?

$\mathrm{(A)}\ 0 \qquad\mathrm{(B)}\ 1 \qquad\mathrm{(C)}\ 2  \qquad\mathrm{(D)}\ 4 \qquad\mathrm{(E)}\ 8$

Solution

Let $z = a+bi$, so $\overline{z} = a-bi$. By definition, $z = a+bi = f(z) = i(a-bi) = b+ai$, which implies that all solutions to $f(z) = z$ lie on the line $y=x$ on the complex plane. The graph of $|z| = 5$ is a circle centered at the origin, and there are $2 \Rightarrow \mathrm{(C)}$ intersections.

See also

2004 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 15
Followed by
Problem 17
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png