2005 AIME I Problems/Problem 6

Revision as of 17:02, 26 November 2011 by Galadys (talk | contribs) (Solution)

Problem

Let $P$ be the product of the nonreal roots of $x^4-4x^3+6x^2-4x=2005.$ Find $\lfloor P\rfloor.$

Solution

The left-hand side of that equation is nearly equal to $(x - 1)^4$. Thus, we add 1 to each side in order to complete the fourth power and get $(x - 1)^4 = 2006$.

Let $r = \sqrt[4]{2006}$ be the positive real fourth root of 2006. Then the roots of the above equation are $x = 1 + i^n r$ for $n = 0, 1, 2, 3$. The two non-real members of this set are $1 + ir$ and $1 - ir$. Their product is $P = 1 + r^2 = 1 + \sqrt{2006}$. $44^2 = 1936 < 2006 < 2025 = 45^2$ so $\lfloor P \rfloor = 1 + 44 = 045$.

Alternate Solution: Starting like before $(x-1)^4= 2006$ This time we apply differences of squares. $(x-1)^4-2006=0$ so $((x-1)^2+\sqrt{2006})((x-1)^2 -\sqrt{2006})=0$ If you think of each part of the product as a quadratic, then $((x-1)^2+\sqrt{2006})$ is bound to hold the two non-real roots since the other definitely crosses the x-axis twice since it is just $x^2$ translated down and right. Therefore the products of the roots of $((x-1)^2+\sqrt{2006})$ or $P=1+\sqrt{2006}$ so

$\lfloor P \rfloor = 1 + 44 = 045$.

See also

2005 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions