Difference between revisions of "2005 AMC 10A Problems/Problem 15"

(added problem and solution)
 
m (fixed typo)
Line 7: Line 7:
 
<math> 3! \cdot 5! \cdot 7! = (3\cdot2\cdot1) \cdot (5\cdot4\cdot3\cdot2\cdot1) \cdot (7\cdot6\cdot5\cdot4\cdot3\cdot2\cdot1) = 2^{8}\cdot3^{4}\cdot5^{2}\cdot7^{1}</math>
 
<math> 3! \cdot 5! \cdot 7! = (3\cdot2\cdot1) \cdot (5\cdot4\cdot3\cdot2\cdot1) \cdot (7\cdot6\cdot5\cdot4\cdot3\cdot2\cdot1) = 2^{8}\cdot3^{4}\cdot5^{2}\cdot7^{1}</math>
  
Therefore, a perfect cube that divides <math> 3! \cdot 5! \cdot 7! </math> must be in the form <math>2^{a}\cdot3^{b}\cdot5^{c}\cdot7^{d}</math> where <math>a</math>, <math>b</math>, <math>c</math>, and <math>d</math> are non-negative multiples of <math>3</math> that are less than of equal to <math>8</math>, <math>4</math>, <math>2</math>, and <math>1</math> respectively.  
+
Therefore, a perfect cube that divides <math> 3! \cdot 5! \cdot 7! </math> must be in the form <math>2^{a}\cdot3^{b}\cdot5^{c}\cdot7^{d}</math> where <math>a</math>, <math>b</math>, <math>c</math>, and <math>d</math> are non-negative multiples of <math>3</math> that are less than or equal to <math>8</math>, <math>4</math>, <math>2</math>, and <math>1</math> respectively.  
  
 
So:  
 
So:  

Revision as of 21:06, 1 August 2006

Problem

How many positive cubes divide $3! \cdot 5! \cdot 7!$ ?

$\mathrm{(A) \ } 2\qquad \mathrm{(B) \ } 3\qquad \mathrm{(C) \ } 4\qquad \mathrm{(D) \ } 5\qquad \mathrm{(E) \ } 6$

Solution

$3! \cdot 5! \cdot 7! = (3\cdot2\cdot1) \cdot (5\cdot4\cdot3\cdot2\cdot1) \cdot (7\cdot6\cdot5\cdot4\cdot3\cdot2\cdot1) = 2^{8}\cdot3^{4}\cdot5^{2}\cdot7^{1}$

Therefore, a perfect cube that divides $3! \cdot 5! \cdot 7!$ must be in the form $2^{a}\cdot3^{b}\cdot5^{c}\cdot7^{d}$ where $a$, $b$, $c$, and $d$ are non-negative multiples of $3$ that are less than or equal to $8$, $4$, $2$, and $1$ respectively.

So:

$a\in\{0,3,6\}$ ($3$ posibilities)

$b\in\{0,3\}$ ($2$ posibilities)

$c\in\{0\}$ ($1$ posibility)

$d\in\{0\}$($1$ posibility)


So the number of perfect cubes that divide $3! \cdot 5! \cdot 7!$ is $3\cdot2\cdot1\cdot1 = 6 \Rightarrow E$

See Also