Difference between revisions of "2005 AMC 10A Problems/Problem 21"

m (who needs to know how to spell, anyhow?)
(Solution)
 
(6 intermediate revisions by 6 users not shown)
Line 1: Line 1:
 
==Problem==
 
==Problem==
For how many positive integers <math>n</math> does <math> 1+2+...+n </math> evenly divide <math>6n</math>?  
+
For how many positive integers <math>n</math> does <math> 1+2+...+n </math> evenly divide from <math>6n</math>?  
  
 
<math> \mathrm{(A) \ } 3\qquad \mathrm{(B) \ } 5\qquad \mathrm{(C) \ } 7\qquad \mathrm{(D) \ } 9\qquad \mathrm{(E) \ } 11 </math>
 
<math> \mathrm{(A) \ } 3\qquad \mathrm{(B) \ } 5\qquad \mathrm{(C) \ } 7\qquad \mathrm{(D) \ } 9\qquad \mathrm{(E) \ } 11 </math>
  
==Solution==
+
== Solution ==
 
If <math> 1+2+...+n </math> evenly [[divide]]s <math>6n</math>, then <math>\frac{6n}{1+2+...+n}</math> is an [[integer]].  
 
If <math> 1+2+...+n </math> evenly [[divide]]s <math>6n</math>, then <math>\frac{6n}{1+2+...+n}</math> is an [[integer]].  
  
Since <math> 1+2+...+n = \frac{n(n+1)}{2} </math> we may substitute the [[RHS]] in the above [[fraction]].  
+
Since <math> 1+2+...+n = \frac{n(n+1)}{2} </math> we may substitute the [[RHS]] in the above [[fraction]]. So the problem asks us for how many [[positive integer]]s <math>n</math> is <math>\frac{6n}{\frac{n(n+1)}{2}}=\frac{12}{n+1}</math> an integer, or equivalently when <math>k(n+1) = 12</math> for a positive integer <math>k</math>.  
  
So the problem asks us for how many [[positive integer]]s <math>n</math> is <math>\frac{6n}{\frac{n(n+1)}{2}}=\frac{12}{n+1}</math> an integer.  
+
<math>\frac{12}{n+1}</math> is an integer when <math>n+1</math> is a [[divisor |factor]] of <math>12</math>.  
  
<math>\frac{12}{n+1}</math> is an integer when <math>n+1</math> is a [[factor]] of <math>12</math>.  
+
The factors of <math>12</math> are <math>1</math>, <math>2</math>, <math>3</math>, <math>4</math>, <math>6</math>, and <math>12</math>, so the possible values of <math>n</math> are <math>0</math>, <math>1</math>, <math>2</math>, <math>3</math>, <math>5</math>, and <math>11</math>.
  
The factors of <math>12</math> are <math>1</math>, <math>2</math>, <math>3</math>, <math>4</math>, <math>6</math>, and <math>12</math>.  
+
But <math>0</math> isn't a positive integer, so only <math>1</math>, <math>2</math>, <math>3</math>, <math>5</math>, and <math>11</math> are possible values of <math>n</math>. Therefore the number of possible values of <math>n</math> is <math>5\Longrightarrow \boxed{\mathrm{(B)}}</math>.
  
So the possible values of <math>n</math> are <math>0</math>, <math>1</math>, <math>2</math>, <math>3</math>, <math>5</math>, and <math>11</math>.
+
==Video Solution==
 +
CHECK OUT Video Solution: https://youtu.be/WRv86DHa3zY
  
But <math>0</math> isn't a positive integer, so only <math>1</math>, <math>2</math>, <math>3</math>, <math>5</math>, and <math>11</math> are possible values of <math>n</math>.
+
==See also==
 
+
{{AMC10 box|year=2005|ab=A|num-b=20|num-a=22}}
Therefore the number of possible values of <math>n</math> is <math>5\Longrightarrow \mathrm{(B)}</math>
 
 
 
==See Also==
 
*[[2005 AMC 10A Problems]]
 
 
 
*[[2005 AMC 10A Problems/Problem 20|Previous Problem]]
 
 
 
*[[2005 AMC 10A Problems/Problem 22|Next Problem]]
 
  
 
[[Category:Introductory Number Theory Problems]]
 
[[Category:Introductory Number Theory Problems]]
 +
{{MAA Notice}}

Latest revision as of 21:08, 30 October 2020

Problem

For how many positive integers $n$ does $1+2+...+n$ evenly divide from $6n$?

$\mathrm{(A) \ } 3\qquad \mathrm{(B) \ } 5\qquad \mathrm{(C) \ } 7\qquad \mathrm{(D) \ } 9\qquad \mathrm{(E) \ } 11$

Solution

If $1+2+...+n$ evenly divides $6n$, then $\frac{6n}{1+2+...+n}$ is an integer.

Since $1+2+...+n = \frac{n(n+1)}{2}$ we may substitute the RHS in the above fraction. So the problem asks us for how many positive integers $n$ is $\frac{6n}{\frac{n(n+1)}{2}}=\frac{12}{n+1}$ an integer, or equivalently when $k(n+1) = 12$ for a positive integer $k$.

$\frac{12}{n+1}$ is an integer when $n+1$ is a factor of $12$.

The factors of $12$ are $1$, $2$, $3$, $4$, $6$, and $12$, so the possible values of $n$ are $0$, $1$, $2$, $3$, $5$, and $11$.

But $0$ isn't a positive integer, so only $1$, $2$, $3$, $5$, and $11$ are possible values of $n$. Therefore the number of possible values of $n$ is $5\Longrightarrow \boxed{\mathrm{(B)}}$.

Video Solution

CHECK OUT Video Solution: https://youtu.be/WRv86DHa3zY

See also

2005 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS