Difference between revisions of "2005 AMC 10A Problems/Problem 23"

Line 13: Line 13:
 
Area of the <math>\triangle DCO</math> is <math>\frac{1}{2}\cdot\frac{1}{6}\cdot\frac{\sqrt{2}}{3}</math> = <math>\frac{\sqrt{2}}{36}</math>.
 
Area of the <math>\triangle DCO</math> is <math>\frac{1}{2}\cdot\frac{1}{6}\cdot\frac{\sqrt{2}}{3}</math> = <math>\frac{\sqrt{2}}{36}</math>.
  
The height of <math>\triangle DCE</math> can be found using the area of <math>\triangle DCO</math> and <math>DO</math> as base. Hence the height of <math>\triangle DCE</math> is <math>\frac{\frac{\sqrt{2}}{36}}{\frac{1}{2}\cdot\frac{1}{2}}</math> = <math>\frac{\sqrt{2}}{9}</math>. The diameter is the base for both the triangles <math>\triangle DCE</math> and <math>\triangle ABD</math>. Hence, the ratio of area of <math>\triangle DCE</math> to the area of <math>\triangle ABD</math> is
+
The height of <math>\triangle DCE</math> can be found using the area of <math>\triangle DCO</math> and <math>DO</math> as base.  
 +
 
 +
Hence the height of <math>\triangle DCE</math> is <math>\frac{\frac{\sqrt{2}}{36}}{\frac{1}{2}\cdot\frac{1}{2}}</math> = <math>\frac{\sqrt{2}}{9}</math>.  
 +
 
 +
The diameter is the base for both the triangles <math>\triangle DCE</math> and <math>\triangle ABD</math>.  
 +
 
 +
Hence, the ratio of the area of <math>\triangle DCE</math> to the area of <math>\triangle ABD</math> is
 
<math>\frac{\frac{\sqrt{2}}{36}}{\frac{\sqrt{2}}{9}}</math> is <math>\frac{1}{3} \Rightarrow C</math>
 
<math>\frac{\frac{\sqrt{2}}{36}}{\frac{\sqrt{2}}{9}}</math> is <math>\frac{1}{3} \Rightarrow C</math>
  

Revision as of 22:41, 24 December 2008

Problem

Let $AB$ be a diameter of a circle and let $C$ be a point on $AB$ with $2\cdot AC=BC$. Let $D$ and $E$ be points on the circle such that $DC \perp AB$ and $DE$ is a second diameter. What is the ratio of the area of $\triangle DCE$ to the area of $\triangle ABD$?

$\mathrm{(A) \ } \frac{1}{6}\qquad \mathrm{(B) \ } \frac{1}{4}\qquad \mathrm{(C) \ } \frac{1}{3}\qquad \mathrm{(D) \ } \frac{1}{2}\qquad \mathrm{(E) \ } \frac{2}{3}$. The area of

Solution

http://img443.imageshack.us/img443/8034/circlenc1.png

$AC$ is $\frac{1}{3}$ of diameter and $CO$ is $\frac{1}{2}$ - $\frac{1}{3}$ = $\frac{1}{6}$.

$OD$ is the radius of the circle, so using the Pythagorean theorem height $CD$ of $\triangle ADB$ is $\sqrt{(\frac{1}{2})^2-(\frac{1}{6})^2$ (Error compiling LaTeX. ! Missing } inserted.) = $\frac{\sqrt{2}}{3}$.

Area of the $\triangle DCO$ is $\frac{1}{2}\cdot\frac{1}{6}\cdot\frac{\sqrt{2}}{3}$ = $\frac{\sqrt{2}}{36}$.

The height of $\triangle DCE$ can be found using the area of $\triangle DCO$ and $DO$ as base.

Hence the height of $\triangle DCE$ is $\frac{\frac{\sqrt{2}}{36}}{\frac{1}{2}\cdot\frac{1}{2}}$ = $\frac{\sqrt{2}}{9}$.

The diameter is the base for both the triangles $\triangle DCE$ and $\triangle ABD$.

Hence, the ratio of the area of $\triangle DCE$ to the area of $\triangle ABD$ is $\frac{\frac{\sqrt{2}}{36}}{\frac{\sqrt{2}}{9}}$ is $\frac{1}{3} \Rightarrow C$


See also

2005 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
Invalid username
Login to AoPS