# 2005 AMC 10A Problems/Problem 23

## Problem

Let $AB$ be a diameter of a circle and let $C$ be a point on $AB$ with $2\cdot AC=BC$. Let $D$ and $E$ be points on the circle such that $DC \perp AB$ and $DE$ is a second diameter. What is the ratio of the area of $\triangle DCE$ to the area of $\triangle ABD$?

$\mathrm{(A) \ } \frac{1}{6}\qquad \mathrm{(B) \ } \frac{1}{4}\qquad \mathrm{(C) \ } \frac{1}{3}\qquad \mathrm{(D) \ } \frac{1}{2}\qquad \mathrm{(E) \ } \frac{2}{3}$

## Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it. $AC$ is $\frac{1}{3}$ of diameter and $CO$ is \frac{1}{2}\-\frac{1}{3}\=\frac{1}{6}. $OD$ is the radius of the circle, so using the Pythagorean theorem height $CD$ is \sqrt{(\frac{1}{2}\)^2-(\frac{1}{6}\)^2)=\frac(\sqrt{2}\){3}\

 2005 AMC 10A (Problems • Answer Key • Resources) Preceded byProblem 22 Followed byProblem 24 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 All AMC 10 Problems and Solutions