Difference between revisions of "2005 AMC 10B Problems/Problem 12"

(Problem)
(Solution)
Line 4: Line 4:
 
<math>\textbf{(A) } \left(\frac{1}{12}\right)^{12} \qquad \textbf{(B) } \left(\frac{1}{6}\right)^{12} \qquad \textbf{(C) } 2\left(\frac{1}{6}\right)^{11} \qquad \textbf{(D) } \frac{5}{2}\left(\frac{1}{6}\right)^{11} \qquad \textbf{(E) } \left(\frac{1}{6}\right)^{10} </math>
 
<math>\textbf{(A) } \left(\frac{1}{12}\right)^{12} \qquad \textbf{(B) } \left(\frac{1}{6}\right)^{12} \qquad \textbf{(C) } 2\left(\frac{1}{6}\right)^{11} \qquad \textbf{(D) } \frac{5}{2}\left(\frac{1}{6}\right)^{11} \qquad \textbf{(E) } \left(\frac{1}{6}\right)^{10} </math>
  
== Solution ==
+
== Solution 1 ==
In order for the product of the numbers to be prime, <math>11</math> of the dice have to be a <math>1</math>, and the other die has to be a prime number. There are <math>3</math> prime numbers (<math>2</math>, <math>3</math>, and <math>5</math>), and there is only one <math>1</math>, and there are <math>\dbinom{12}{1}</math> ways to choose which die will have the prime number, so the probability is <math>\dfrac{3}{6}\times\left(\dfrac{1}{6}\right)^{11}\times\dbinom{12}{1} = \dfrac{1}{2}\times\left(\dfrac{1}{6}\right)^{11}\times12=\left(\dfrac{1}{6}\right)^{11}\times6=\boxed{\mathrm{(E)}\ \left(\dfrac{1}{6}\right)^{10}}</math>.
+
In order for the product of the numbers to be prime, <math>11</math> of the dice have to be a <math>1</math>, and the other die has to be a prime number. There are <math>3</math> prime numbers (<math>2</math>, <math>3</math>, and <math>5</math>), and there is only one <math>1</math>, and there are <math>\dbinom{12}{1}</math> ways to choose which die will have the prime number, so the probability is <math>\dfrac{3}{6}\times\left(\dfrac{1}{6}\right)^{11}\times\dbinom{12}{1} = \dfrac{1}{2}\times\left(\dfrac{1}{6}\right)^{11}\times12=\left(\dfrac{1}{6}\right)^{11}\times6=\boxed{\textbf{(E) }\left(\dfrac{1}{6}\right)^{10}}</math>.
  
 
== Solution 2==
 
== Solution 2==

Revision as of 14:39, 15 December 2021

Problem

Twelve fair dice are rolled. What is the probability that the product of the numbers on the top faces is prime?

$\textbf{(A) } \left(\frac{1}{12}\right)^{12} \qquad \textbf{(B) } \left(\frac{1}{6}\right)^{12} \qquad \textbf{(C) } 2\left(\frac{1}{6}\right)^{11} \qquad \textbf{(D) } \frac{5}{2}\left(\frac{1}{6}\right)^{11} \qquad \textbf{(E) } \left(\frac{1}{6}\right)^{10}$

Solution 1

In order for the product of the numbers to be prime, $11$ of the dice have to be a $1$, and the other die has to be a prime number. There are $3$ prime numbers ($2$, $3$, and $5$), and there is only one $1$, and there are $\dbinom{12}{1}$ ways to choose which die will have the prime number, so the probability is $\dfrac{3}{6}\times\left(\dfrac{1}{6}\right)^{11}\times\dbinom{12}{1} = \dfrac{1}{2}\times\left(\dfrac{1}{6}\right)^{11}\times12=\left(\dfrac{1}{6}\right)^{11}\times6=\boxed{\textbf{(E) }\left(\dfrac{1}{6}\right)^{10}}$.

Solution 2

There are three cases where the product of the numbers is prime. One die will show $2$, $3$, or $5$ and each of the other $11$ dice will show a $1$. For each of these three cases, the number of ways to order the numbers is $\dbinom{12}{1}$ = $12$ . There are $6$ possible numbers for each of the $12$ dice, so the total number of permutations is $6^{12}$. The probability the product is prime is therefore $\frac{3\cdot 12}{6^{12}} = \frac{1}{6^{10}} = \left(\dfrac{1}{6}\right)^{10} \mathrm{(E)}$

~mobius247

See Also

2005 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png