2005 AMC 10B Problems/Problem 17

Revision as of 13:08, 16 December 2021 by Dairyqueenxd (talk | contribs) (Solution using logarithms)

Problem

Suppose that $4^a = 5$, $5^b = 6$, $6^c = 7$, and $7^d = 8$. What is $a \cdot b\cdot c \cdot d$?

$\textbf{(A) } 1 \qquad \textbf{(B) } \frac{3}{2} \qquad \textbf{(C) } 2 \qquad \textbf{(D) } \frac{5}{2} \qquad \textbf{(E) } 3$

Solution

\begin{align*} 8&=7^d \\ 8&=\left(6^c\right)^d\\ 8&=\left(\left(5^b\right)^c\right)^d\\ 8&=\left(\left(\left(4^a\right)^b\right)^c\right)^d\\ 8&=4^{a\cdot b\cdot c\cdot d}\\ 2^3&=2^{2\cdot a\cdot b\cdot c\cdot d}\\ 3&=2\cdot a\cdot b\cdot c\cdot d\\ a\cdot b\cdot c\cdot d&=\boxed{\textbf{(B) }\dfrac{3}{2}}\\ \end{align*}

Solution 2 (logarithms)

We can write $a$ as $\log_4 5$, $b$ as $\log_5 6$, $c$ as $\log_6 7$, and $d$ as $\log_7 8$.

We know that $\log_b a$ can be rewritten as $\frac{\log a}{\log b}$, so we have: \begin{align*} a\cdot b \cdot c \cdot d &= \frac{\cancel{\log5}}{\log4}\cdot\frac{\cancel{\log6}}{\cancel{\log5}}\cdot\frac{\cancel{\log7}}{\cancel{\log6}}\cdot\frac{\log8}{\cancel{\log7}} \\ a\cdot b \cdot c \cdot d &= \frac{\log8}{\log4} \\ a\cdot b \cdot c \cdot d &= \frac{3\cancel{\log2}}{2\cancel{\log2}} \\ a\cdot b \cdot c \cdot d &= \boxed{\textbf{(B) }\frac{3}{2}} \\ \end{align*}

Solution using logarithm chain rule

As in solution 2, we can write $a$ as $\log_4 5$, $b$ as $\log_56$, $c$ as $\log_67$, and $d$ as $\log_78$. $a*b*c*d$ is equivalent to $(\log_4 5)*(\log_5 6)*(\log_6 7)*(\log_7 8)$. Note that by the logarithm chain rule, this is equivalent to $\log_4 8$, which evaluates to $\frac{3}{2}$, so $\boxed{B}$ is the answer. ~solver1104

See Also

2005 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png