2005 AMC 12A Problems/Problem 15

Revision as of 21:39, 13 June 2018 by Coolgeo (talk | contribs) (Solution 4)

Problem

Let $\overline{AB}$ be a diameter of a circle and $C$ be a point on $\overline{AB}$ with $2 \cdot AC = BC$. Let $D$ and $E$ be points on the circle such that $\overline{DC} \perp \overline{AB}$ and $\overline{DE}$ is a second diameter. What is the ratio of the area of $\triangle DCE$ to the area of $\triangle ABD$?

[asy] unitsize(2.5cm); defaultpen(fontsize(10pt)+linewidth(.8pt)); dotfactor=3; pair O=(0,0), C=(-1/3.0), B=(1,0), A=(-1,0); pair D=dir(aCos(C.x)), E=(-D.x,-D.y); draw(A--B--D--cycle); draw(D--E--C); draw(unitcircle,white); drawline(D,C); dot(O); clip(unitcircle); draw(unitcircle); label("$E$",E,SSE); label("$B$",B,E); label("$A$",A,W); label("$D$",D,NNW); label("$C$",C,SW); draw(rightanglemark(D,C,B,2));[/asy]

$(\text {A}) \ \frac {1}{6} \qquad (\text {B}) \ \frac {1}{4} \qquad (\text {C})\ \frac {1}{3} \qquad (\text {D}) \ \frac {1}{2} \qquad (\text {E})\ \frac {2}{3}$

Solution

Solution 1

Notice that the bases of both triangles are diameters of the circle. Hence the ratio of the areas is just the ratio of the heights of the triangles, or $\frac{CD}{CF}$ ($F$ is the foot of the perpendicular from $C$ to $DE$).

Call the radius $r$. Then $AC = \frac 13(2r) = \frac 23r$, $CO = \frac 13r$. Using the Pythagorean Theorem in $\triangle OCD$, we get $\frac{1}{3}r^2 + CD^2 = r^2 \Longrightarrow CD = \frac{2\sqrt{2}}3r$.

Now we have to find $CF$. Notice $\triangle OCD \sim \triangle OFC$, so we can write the proportion:

$\frac{OF}{OC} = \frac{OC}{OD}$
$\frac{OF}{\frac{1}{3}r} = \frac{\frac{1}{3}r}{r}$
$OF = \frac 19r$

By the Pythagorean Theorem in $\triangle OFC$, we have $\left(\frac{1}{9}r\right)^2 + CF^2 = \left(\frac{1}{3}r\right)^2 \Longrightarrow CF = \sqrt{\frac{8}{81}r^2} = \frac{2\sqrt{2}}{9}r$.

Our answer is $\frac{CD}{CF} = \frac{\frac{2\sqrt{2}}{3}r}{\frac{2\sqrt{2}}{9}r} = \frac 13 \Longrightarrow \mathrm{(C)}$.

Solution 2

Let the center of the circle be $O$.

Note that $2 \cdot AC = BC \Rightarrow 3 \cdot AC = AB$.

$O$ is midpoint of $AB \Rightarrow \frac{3}{2}AC = AO \Rightarrow CO = \frac{1}{3}AO \Rightarrow CO = \frac{1}{6} AB$.

$O$ is midpoint of $DE \Rightarrow$ Area of $\triangle DCE = 2 \cdot$ Area of $\triangle DCO = 2 \cdot (\frac{1}{6} \cdot$ Area of $\triangle ABD) = \frac{1}{3} \cdot$ Area of $\triangle ABD \Longrightarrow \mathrm{(C)}$.

Solution 3

Let $r$ be the radius of the circle. Note that $AC+BC = 2r$ so $AC = \frac{2}{3}r$.

By Power of a Point Theorem, $CD^2= AC \cdot BC = 2\cdot AC^2$, and thus $CD = \sqrt{2} \cdot AC = \frac{2\sqrt{2}}{3}r$

Then the area of $\triangle ABD$ is $\frac{1}{2} AB \cdot CD = \frac{2\sqrt{2}}{3}r^2$. Similarly, the area of $\triangle DCE$ is $\frac{1}{2}(r-AC) \cdot 2 \cdot CD = \frac{2\sqrt{2}}{9}r^2$, so the desired ratio is $\frac{\frac{2\sqrt{2}}{9}r^2}{\frac{2\sqrt{2}}{3}r^2} = \frac{1}{3} \Longrightarrow \mathrm{(C)}$

Solution 4

[asy] unitsize(2.5cm); defaultpen(fontsize(10pt)+linewidth(.8pt)); dotfactor=3; pair O=(0,0), C=(-1/3.0), B=(1,0), A=(-1,0); pair D=dir(aCos(C.x)), E=(-D.x,-D.y); draw(A--B--D--cycle); draw(D--E--C); draw(unitcircle,white); drawline(D,C); dot(O); clip(unitcircle); draw(unitcircle); label("$E$",E,SSE); label("$B$",B,NE); label("$A$",A,W); label("$D$",D,NNW); label("$C$",C,SW); draw(E--(E.x,0),dashed); label("H",(E.x,0),SE); label("O",(0,0),NE); label("1",(C--O),N); label("2",(A--C),N); label("3",(O--B),N); label("3",(O--D),NE); label("3",(O--E),NE); draw(rightanglemark(E,(E.x,0),A,2)); draw(rightanglemark(D,C,B,2));[/asy]

Let the center of the circle be $O$. Without loss of generality, let the radius of the circle be equal to $3$. Thus, $AO=3$ and $OB=3$. As a consequence of $2(AC)=BC$, $AC=2$ and $CO=1$. Also, we know that $DO$ and $OE$ are both equal to $3$ due to the fact that they are both radii. Thus from the Pythagorean Theorem, we have

See also

2005 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png