Difference between revisions of "2005 AMC 12B Problems/Problem 12"

(Solution)
(Solution 2)
 
(10 intermediate revisions by 5 users not shown)
Line 3: Line 3:
 
The [[quadratic equation]] <math>x^2+mx+n</math> has roots twice those of <math>x^2+px+m</math>, and none of <math>m,n,</math> and <math>p</math> is zero. What is the value of <math>n/p</math>?
 
The [[quadratic equation]] <math>x^2+mx+n</math> has roots twice those of <math>x^2+px+m</math>, and none of <math>m,n,</math> and <math>p</math> is zero. What is the value of <math>n/p</math>?
  
<math>\mathrm{(A)}\ {{{1}}} \qquad \mathrm{(B)}\ {{{2}}} \qquad \mathrm{(C)}\ {{{4}}} \qquad \mathrm{(D)}\ {{{8}}} \qquad \mathrm{(E)}\ {{{16}}}</math>
+
<math>\textbf{(A) }\ {{{1}}} \qquad \textbf{(B) }\ {{{2}}} \qquad \textbf{(C) }\ {{{4}}} \qquad \textbf{(D) }\ {{{8}}} \qquad \textbf{(E) }\ {{{16}}}</math>
 
 
== Solution ==
 
 
 
  
 +
==Solutions==
 
===Solution 1===
 
===Solution 1===
 
Let <math>x^2 + px + m = 0</math> have roots <math>a</math> and <math>b</math>. Then  
 
Let <math>x^2 + px + m = 0</math> have roots <math>a</math> and <math>b</math>. Then  
Line 17: Line 15:
 
<cmath>x^2 + mx + n = (x-2a)(x-2b) = x^2 - 2(a+b)x + 4ab,</cmath>
 
<cmath>x^2 + mx + n = (x-2a)(x-2b) = x^2 - 2(a+b)x + 4ab,</cmath>
  
and <math>m = -2(a+b)</math> and <math>n = 4ab</math>. Thus <math>\frac{n}{p} = \frac{4ab}{-(a+b)} = \frac{4m}{\frac{m}{2}} = \boxed{\mathrm{(D)}\ 8}</math>.  
+
and <math>m = -2(a+b)</math> and <math>n = 4ab</math>. Thus <math>\frac{n}{p} = \frac{4ab}{-(a+b)} = \frac{4m}{\frac{m}{2}} = \boxed{\textbf{(D) }8}</math>.  
  
 
Indeed, consider the quadratics <math>x^2 + 8x + 16 = 0,\ x^2 + 16x + 64 = 0</math>.
 
Indeed, consider the quadratics <math>x^2 + 8x + 16 = 0,\ x^2 + 16x + 64 = 0</math>.
  
 
===Solution 2===
 
===Solution 2===
If the roots of <math>x^2 + mx + n = 0</math> are twice the roots of <math>x^2 + px + m = 0</math>, then the sum of the roots of the first equation is also twice the sum of the roots of the second equation, and the product of the roots of the first equation is <math>2(2) = 4</math> times the product of the roots of the second equation. Using Vieta's equations, <math>-m = 2(-p)</math>, and <math>n = 4(m)</math>. Substituting, <math>n = 8p</math>, so <math>\frac{n}{p} = 8 = \boxed{\textbf{D}}</math>
+
If the roots of <math>x^2 + mx + n = 0</math> are <math>2a</math> and <math>2b</math> and the roots of <math>x^2 + px + m = 0</math> are <math>a</math> and <math>b</math>, then using Vieta's formulas,
 +
<cmath>2a + 2b = -m</cmath>
 +
<cmath>a + b = -p</cmath>
 +
<cmath>2a(2b) = n</cmath>
 +
<cmath>a(b) = m</cmath>
 +
Therefore, substituting the second equation into the first equation gives
 +
<cmath>m = 2(p)</cmath>
 +
and substituting the fourth equation into the third equation gives
 +
<cmath>n = 4(m)</cmath>
 +
Therefore, <math>n = 8p</math>, so <math>\frac{n}{p}= \boxed{\textbf{(D) }8}</math>
 +
 
 +
== Video Solution ==
 +
https://youtu.be/3dfbWzOfJAI?t=1023
 +
 
 +
~ pi_is_3.14
  
 
== See also ==
 
== See also ==

Latest revision as of 12:27, 16 December 2021

The following problem is from both the 2005 AMC 12B #12 and 2005 AMC 10B #16, so both problems redirect to this page.

Problem

The quadratic equation $x^2+mx+n$ has roots twice those of $x^2+px+m$, and none of $m,n,$ and $p$ is zero. What is the value of $n/p$?

$\textbf{(A) }\ {{{1}}} \qquad \textbf{(B) }\ {{{2}}} \qquad \textbf{(C) }\ {{{4}}} \qquad \textbf{(D) }\ {{{8}}} \qquad \textbf{(E) }\ {{{16}}}$

Solutions

Solution 1

Let $x^2 + px + m = 0$ have roots $a$ and $b$. Then

\[x^2 + px + m = (x-a)(x-b) = x^2 - (a+b)x + ab,\]

so $p = -(a+b)$ and $m = ab$. Also, $x^2 + mx + n = 0$ has roots $2a$ and $2b$, so

\[x^2 + mx + n = (x-2a)(x-2b) = x^2 - 2(a+b)x + 4ab,\]

and $m = -2(a+b)$ and $n = 4ab$. Thus $\frac{n}{p} = \frac{4ab}{-(a+b)} = \frac{4m}{\frac{m}{2}} = \boxed{\textbf{(D) }8}$.

Indeed, consider the quadratics $x^2 + 8x + 16 = 0,\ x^2 + 16x + 64 = 0$.

Solution 2

If the roots of $x^2 + mx + n = 0$ are $2a$ and $2b$ and the roots of $x^2 + px + m = 0$ are $a$ and $b$, then using Vieta's formulas, \[2a + 2b = -m\] \[a + b = -p\] \[2a(2b) = n\] \[a(b) = m\] Therefore, substituting the second equation into the first equation gives \[m = 2(p)\] and substituting the fourth equation into the third equation gives \[n = 4(m)\] Therefore, $n = 8p$, so $\frac{n}{p}= \boxed{\textbf{(D) }8}$

Video Solution

https://youtu.be/3dfbWzOfJAI?t=1023

~ pi_is_3.14

See also

2005 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 15
Followed by
Problem 17
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2005 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png