Difference between revisions of "2005 AMC 12B Problems/Problem 12"

(Problem)
(solution)
Line 1: Line 1:
{{empty}}
 
 
 
== Problem ==
 
== Problem ==
 
The [[quadratic equation]] <math>x^2+mx+n</math> has roots twice those of <math>x^2+px+m</math>, and none of <math>m,n,</math> and <math>p</math> is zero. What is the value of <math>n/p</math>?
 
The [[quadratic equation]] <math>x^2+mx+n</math> has roots twice those of <math>x^2+px+m</math>, and none of <math>m,n,</math> and <math>p</math> is zero. What is the value of <math>n/p</math>?
Line 7: Line 5:
  
 
== Solution ==
 
== Solution ==
{{solution}}
+
Let <math>x^2 + px + m = 0</math> have roots <math>a</math> and <math>b</math>. Then
 +
 
 +
<cmath>x^2 + px + m = (x-a)(x-b) = x^2 - (a+b)x + ab,</cmath>
 +
 
 +
so <math>p = -(a+x)</math> and <math>m = ab</math>. Also, <math>x^2 + mx + n = 0</math> has roots <math>2a</math> and <math>2b</math>, so
 +
 
 +
<cmath>x^2 + mx + n = (x-2a)(x-2b) = x^2 - 2(a+b)x + 4ab,</cmath>
 +
 
 +
and <math>m = -2(a+b)</math> and <math>n = 4ab</math>. Thus <math>\frac{n}{p} = \frac{4ab}{-(a+x)} = \frac{4m}{\frac{m}{2}} = 8 \Longrightarrow \textbf{(D)}</math>.
 +
 
 +
Indeed, consider the quadratics <math>x^2 + 8x + 16 = 0,\ x^2 + 16x + 64 = 0</math>. See [[Vieta's formulas]].
 +
 
 
== See also ==
 
== See also ==
* [[2005 AMC 12B Problems/Problem 11 | Previous problem]]
+
{{AMC12 box|year=2005|num-b=11|num-a=13|ab=B}}
* [[2005 AMC 12B Problems/Problem 13 | Next problem]]
+
 
* [[2005 AMC 12B Problems]]
+
[[Category:Introductory Algebra Problems]]

Revision as of 18:19, 27 August 2008

Problem

The quadratic equation $x^2+mx+n$ has roots twice those of $x^2+px+m$, and none of $m,n,$ and $p$ is zero. What is the value of $n/p$?

$\mathrm{(A)}\ {{{1}}} \qquad \mathrm{(B)}\ {{{2}}} \qquad \mathrm{(C)}\ {{{4}}} \qquad \mathrm{(D)}\ {{{8}}} \qquad \mathrm{(E)}\ {{{16}}}$

Solution

Let $x^2 + px + m = 0$ have roots $a$ and $b$. Then

\[x^2 + px + m = (x-a)(x-b) = x^2 - (a+b)x + ab,\]

so $p = -(a+x)$ and $m = ab$. Also, $x^2 + mx + n = 0$ has roots $2a$ and $2b$, so

\[x^2 + mx + n = (x-2a)(x-2b) = x^2 - 2(a+b)x + 4ab,\]

and $m = -2(a+b)$ and $n = 4ab$. Thus $\frac{n}{p} = \frac{4ab}{-(a+x)} = \frac{4m}{\frac{m}{2}} = 8 \Longrightarrow \textbf{(D)}$.

Indeed, consider the quadratics $x^2 + 8x + 16 = 0,\ x^2 + 16x + 64 = 0$. See Vieta's formulas.

See also

2005 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions