2005 AMC 8 Problems/Problem 15

Revision as of 18:37, 24 December 2012 by Gina (talk | contribs) (Created page with "==Problem== How many different isosceles triangles have integer side lengths and perimeter 23? <math> \textbf{(A)}\ 2\qquad\textbf{(B)}\ 4\qquad\textbf{(C)}\ 6\qquad\textbf{(D)}...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

How many different isosceles triangles have integer side lengths and perimeter 23?

$\textbf{(A)}\ 2\qquad\textbf{(B)}\ 4\qquad\textbf{(C)}\ 6\qquad\textbf{(D)}\ 9\qquad\textbf{(E)}\ 11$

Solution

Let $b$ be the base of the isosceles triangles, and let $a$ be the lengths of the other legs. From this, $2a+b=23$ and $b=23-2a$. From triangle inequality, $2a>b$, then plug in the value from the previous equation to get $2a>23-2a$ or $a>5.75$. The maximum value of $a$ occurs when $b=1$, in which from the first equation $a=11$. Thus, $a$ can have integer side lengths from $6$ to $11$, and there are $\boxed{\textbf{(E)}\ 6}$ triangles.

See Also

2005 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions