Difference between revisions of "2006 AIME A Problems/Problem 3"

(Solution)
(Redirected page to 2006 AIME I Problems/Problem 3)
 
(7 intermediate revisions by 3 users not shown)
Line 1: Line 1:
== Problem ==
+
#REDIRECT [[2006 AIME I Problems/Problem 3]]
Let <math> \displaystyle P </math> be the product of the first <math>\displaystyle 100</math> positive odd integers. Find the largest integer <math>\displaystyle k </math> such that <math>\displaystyle P </math> is divisible by <math>\displaystyle 3^k .</math>
 
 
 
== Solution ==
 
 
 
Note that the product of the first <math>\displaystyle 100</math> positive odd integers can be written as <math>\displaystyle 1\cdot 3\cdot 5\cdot 7\cdots 195\cdot 197\cdot 199=\frac{1\cdot 2\cdots200}{2\cdot4\cdots200} = \frac{200!}{2^{100}\cdot 100!}</math>
 
 
 
Hence, we seek the number of threes in <math>\displaystyle 200!</math> decreased by the number of threes in <math>\displaystyle 100!.</math>
 
 
 
There are
 
 
 
<math>\displaystyle \left\lfloor \frac{200}{3}\right\rfloor+\left\lfloor\frac{200}{9}\right\rfloor+\left\lfloor \frac{200}{27}\right\rfloor+\left\lfloor\frac{200}{81}\right\rfloor =66+22+7+2=97</math>
 
 
 
threes in <math>\displaystyle 200!</math> and
 
 
 
<math>\displaystyle \left\lfloor \frac{100}{3}\right\rfloor+\left\lfloor\frac{100}{9}\right\rfloor+\left\lfloor \frac{100}{27}\right\rfloor+\left\lfloor\frac{100}{81}\right\rfloor=33+11+3+1=48 </math>
 
 
 
threes in <math>\displaystyle 100!</math>
 
 
 
Therefore, we have a total of <math>\displaystyle 97-48=049</math> threes.
 
 
 
For more information, see also [[Factorial#Prime factorization| prime factorizations of a factorial]].
 
 
 
== See also ==
 
*[[2006 AIME II Problems]]
 
 
 
[[Category:Intermediate Number Theory Problems]]
 

Latest revision as of 12:21, 14 June 2009