Difference between revisions of "2006 AIME A Problems/Problem 3"

m
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
Let <math> P </math> be the product of the first 100 positive odd integers. Find the largest integer <math> k </math> such that <math> P </math> is divisible by <math> 3^k </math>
+
Let <math> \displaystyle P </math> be the product of the first <math>\displaystyle 100</math> positive odd integers. Find the largest integer <math>\displaystyle k </math> such that <math>\displaystyle P </math> is divisible by <math>\displaystyle 3^k .</math>
  
 
== Solution ==
 
== Solution ==
 +
 +
Note that the product of the first <math>\displaystyle 100</math> positive odd integers can be written as <math>\displaystyle 1\cdot 3\cdot 5\cdot 7\cdots 195\cdot 197\cdot 199=\frac{200!}{2(100)!}.</math>
 +
 +
Hence, we seek the number of threes in <math>\displaystyle 200!</math> decreased by the number of threes in <math>\displaystyle 100!.</math>
 +
 +
There are <center><math>\displaystyle \lfloor \frac{200}{3}\rfloor+\lfloor\frac{200}{9}\rfloor+\lfloor \frac{200}{27}\rfloor+\lfloor\frac{200}{81}\rfloor =66+22+7+2=97</math></center>
 +
 +
threes in <math>\displaystyle 200!</math> and
 +
 +
<center><math>\displaystyle \lfloor \frac{100}{3}\rfloor+\lfloor\frac{100}{9}\rfloor+\lfloor \frac{100}{27}\rfloor+\lfloor\frac{100}{81}\rfloor=33+11+3+1=48 </math></center>
 +
 +
threes in <math>\displaystyle 100!</math>
 +
 +
Therefore, we have a total of <math>\displaystyle 97-48=049</math> threes.
 +
  
 
== See also ==
 
== See also ==

Revision as of 14:28, 24 July 2006

Problem

Let $\displaystyle P$ be the product of the first $\displaystyle 100$ positive odd integers. Find the largest integer $\displaystyle k$ such that $\displaystyle P$ is divisible by $\displaystyle 3^k .$

Solution

Note that the product of the first $\displaystyle 100$ positive odd integers can be written as $\displaystyle 1\cdot 3\cdot 5\cdot 7\cdots 195\cdot 197\cdot 199=\frac{200!}{2(100)!}.$

Hence, we seek the number of threes in $\displaystyle 200!$ decreased by the number of threes in $\displaystyle 100!.$

There are

$\displaystyle \lfloor \frac{200}{3}\rfloor+\lfloor\frac{200}{9}\rfloor+\lfloor \frac{200}{27}\rfloor+\lfloor\frac{200}{81}\rfloor =66+22+7+2=97$

threes in $\displaystyle 200!$ and

$\displaystyle \lfloor \frac{100}{3}\rfloor+\lfloor\frac{100}{9}\rfloor+\lfloor \frac{100}{27}\rfloor+\lfloor\frac{100}{81}\rfloor=33+11+3+1=48$

threes in $\displaystyle 100!$

Therefore, we have a total of $\displaystyle 97-48=049$ threes.


See also

Invalid username
Login to AoPS