Difference between revisions of "2006 AIME II Problems/Problem 2"

 
m (Solution)
 
(8 intermediate revisions by 4 users not shown)
Line 1: Line 1:
#REDIRECT [[2006 AIME A Problems/Problem 2]]
+
== Problem ==
 +
 
 +
The lengths of the sides of a [[triangle]] with positive area are <math>\log_{10} 12</math>, <math>\log_{10} 75</math>, and <math>\log_{10} n</math>, where <math>n</math> is a positive integer. Find the number of possible values for <math>n</math>.
 +
 
 +
== Solution ==
 +
By the [[Triangle Inequality]] and applying the well-known logarithmic property <math>\log_{c} a + \log_{c} b = \log_{c} ab</math>, we have that
 +
<div style="text-align:center;">
 +
<math>\log_{10} 12 + \log_{10} n > \log_{10} 75 </math>
 +
 
 +
<math>\log_{10} 12n > \log_{10} 75 </math>
 +
 
 +
<math> 12n > 75 </math>
 +
 
 +
<math> n > \frac{75}{12} = \frac{25}{4} = 6.25 </math>
 +
</div>
 +
 
 +
Also,
 +
<div style="text-align:center;">
 +
<math>\log_{10} 12 + \log_{10} 75 > \log_{10} n </math>
 +
 
 +
<math>\log_{10} 12\cdot75 > \log_{10} n </math>
 +
 
 +
<math> n < 900 </math>
 +
</div>
 +
Combining these two inequalities:
 +
 
 +
<cmath> 6.25 < n < 900 </cmath>
 +
 
 +
Thus <math>n</math> is in the set <math>(6.25 , 900)</math>; the number of positive integer <math>n</math> which satisfies this requirement is <math>\boxed{893}</math>.
 +
 
 +
== See also ==
 +
{{AIME box|year=2006|n=II|num-b=1|num-a=3}}
 +
 
 +
[[Category:Intermediate Geometry Problems]]
 +
[[Category:Intermediate Algebra Problems]]
 +
{{MAA Notice}}

Latest revision as of 14:58, 14 April 2020

Problem

The lengths of the sides of a triangle with positive area are $\log_{10} 12$, $\log_{10} 75$, and $\log_{10} n$, where $n$ is a positive integer. Find the number of possible values for $n$.

Solution

By the Triangle Inequality and applying the well-known logarithmic property $\log_{c} a + \log_{c} b = \log_{c} ab$, we have that

$\log_{10} 12 + \log_{10} n > \log_{10} 75$

$\log_{10} 12n > \log_{10} 75$

$12n > 75$

$n > \frac{75}{12} = \frac{25}{4} = 6.25$

Also,

$\log_{10} 12 + \log_{10} 75 > \log_{10} n$

$\log_{10} 12\cdot75 > \log_{10} n$

$n < 900$

Combining these two inequalities:

\[6.25 < n < 900\]

Thus $n$ is in the set $(6.25 , 900)$; the number of positive integer $n$ which satisfies this requirement is $\boxed{893}$.

See also

2006 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png