2006 AIME I Problems

Revision as of 22:51, 29 June 2006 by MCrawford (talk | contribs) (adding see also links)
  1. In quadrilateral $ABCD , \angle B$ is a right angle, diagonal $\overline{AC}$ is perpendicular to $\overline{CD},  AB=18, BC=21,$ and $CD=14.$ Find the perimeter of $ABCD.$
  2. Let set $\mathcal{A}$ be a 90-element subset of $\{1,2,3,\ldots,100\},$ and let $S$ be the sum of the elements of $\mathcal{A}.$ Find the number of possible values of $S.$
  3. Find the least positive integer such that when its leftmost digit is deleted, the resulting integer is 1/29 of the original integer.
  4. Let $N$ be the number of consecutive 0's at the right end of the decimal representation of the product $1!2!3!4!\cdots99!100!.$ Find the remainder when $N$ is divided by 1000.
  5. The number
    $\sqrt{104\sqrt{6}+468\sqrt{10}+144\sqrt{15}+2006}$
    can be written as $a\sqrt{2}+b\sqrt{3}+c\sqrt{5},$ where $a, b,$ and $c$ are positive integers. Find $a\cdot b\cdot c.$
  6. Let $\mathcal{S}$ be the set of real numbers that can be represented as repeating decimals of the form $0.\overline{abc}$ where $a, b, c$ are distinct digits. Find the sum of the elements of $\mathcal{S}.$
  7. An angle is drawn on a set of equally spaced parallel lines as shown. The ratio of the area of shaded region $\mathcal{C}$ to the area of shaded region $\mathcal{B}$ is 11/5. Find the ratio of shaded region $\mathcal{D}$ to the area of shaded region $\mathcal{A}.$
  8. Hexagon $ABCDEF$ is divided into four rhombuses, $\mathcal{P, Q, R, S,}$ and $\mathcal{T,}$ as shown. Rhombuses $\mathcal{P, Q, R,}$ and $\mathcal{S}$ are congruent, and each has area $\sqrt{2006}.$ Let $K$ be the area of rhombus $\mathcal{T}.$ Given that $K$ is a positive integer, find the number of possible values for $K.$
  9. The sequence $a_1, a_2, \ldots$ is geometric with $a_1=a$ and common ratio $r,$ where $a$ and $r$ are positive integers. Given that $\log_8 a_1+\log_8 a_2+\cdots+\log_8 a_{12} = 2006,$ find the number of possible ordered pairs $(a,r).$
  10. Eight circles of diameter 1 are packed in the first quadrant of the coordinte plane as shown. Let region $\mathcal{R}$ be the union of the eight circular regions. Line $l,$ with slope 3, divides $\mathcal{R}$ into two regions of equal area. Line $l$'s equation can be expressed in the form $ax=by+c,$ where $a, b,$ and $c$ are positive integers whose greatest common divisor is 1. Find $a^2+b^2+c^2.$
  11. A collection of 8 cubes consists of one cube with edge-length $k$ for each integer $k, 1 \le k \le 8.$ A tower is to be built using all 8 cubes according to the rules: * Any cube may be the bottom cube in the tower.
    * The cube immediately on top of a cube with edge-length $k$ must have edge-length at most $k+2.$
    Let $T$ be the number of different towers than can be constructed. What is the remainder when $T$ is divided by 1000?
  12. Find the sum of the values of $x$ such that $\cos^3 3x+ \cos^3 5x = 8 \cos^3 4x \cos^3 x,$ where $x$ is measured in degrees and $100< x< 200.$
  13. For each even positive integer $x,$ let $g(x)$ denote the greatest power of 2 that divides $x.$ For example, $g(20)=4$ and $g(16)=16.$ For each positive integer $n,$ let $S_n=\sum_{k=1}^{2^{n-1}}g(2k).$ Find the greatest integer $n$ less than 1000 such that $S_n$ is a perfect square.
  14. A tripod has three legs each of length 5 feet. When the tripod is set up, the angle between any pair of legs is equal to the angle between any other pair, and the top of the tripod is 4 feet from the ground In setting up the tripod, the lower 1 foot of one leg breaks off. Let $h$ be the height in feet of the top of the tripod from the ground when the broken tripod is set up. Then $h$ can be written in the form $\frac m{\sqrt{n}},$ where $m$ and $n$ are positive integers and $n$ is not divisible by the square of any prime. Find $\lfloor m+\sqrt{n}\rfloor.$ (The notation $\lfloor x\rfloor$ denotes the greatest integer that is less than or equal to $x.$)
  15. Given that a sequence satisfies $x_0=0$ and $|x_k|=|x_{k-1}+3|$ for all integers $k\ge 1,$ find the minimum possible value of $|x_1+x_2+\cdots+x_{2006}|.$


See also