Difference between revisions of "2006 AIME I Problems/Problem 1"

m (Solution: div align=center)
(Problem)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
In quadrilateral <math> ABCD , \angle B </math> is a right angle, diagonal <math> \overline{AC} </math> is perpendicular to <math> \overline{CD}, AB=18, BC=21, </math> and <math> CD=14. </math> Find the perimeter of <math> ABCD. </math>
+
In convex hexagon <math>ABCDEF</math>, all six sides are congruent, <math>\angle A</math> and <math>\angle D</math> are right angles, and <math>\angle B, \angle C, \angle E,</math> and <math>\angle F</math> are congruent. The area of the hexagonal region is <math>2116(\sqrt{2}+1).</math> Find <math>AB</math>.
  
 
== Solution ==
 
== Solution ==

Revision as of 13:53, 25 September 2007

Problem

In convex hexagon $ABCDEF$, all six sides are congruent, $\angle A$ and $\angle D$ are right angles, and $\angle B, \angle C, \angle E,$ and $\angle F$ are congruent. The area of the hexagonal region is $2116(\sqrt{2}+1).$ Find $AB$.

Solution

From the problem statement, we construct the following diagram:

Aime06i.1.PNG

Using the Pythagorean Theorem:

$(AD)^2 = (AC)^2 + (CD)^2$
$(AC)^2 = (AB)^2 + (BC)^2$

Substituting $(AB)^2 + (BC)^2$ for $(AC)^2$:

$(AD)^2 = (AB)^2 + (BC)^2 + (CD)^2$

Plugging in the given information:

$(AD)^2 = (18)^2 + (21)^2 + (14)^2$
$(AD)^2 = 961$
$(AD)= 31$

So the perimeter is $18+21+14+31=84$, and the answer is $084$.

See also

2006 AIME I (ProblemsAnswer KeyResources)
Preceded by
First Question
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions
Invalid username
Login to AoPS