Difference between revisions of "2006 AIME I Problems/Problem 1"

(Solution)
m (Solution)
 
(6 intermediate revisions by 4 users not shown)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
In convex hexagon <math>ABCDEF</math>, all six sides are congruent, <math>\angle A</math> and <math>\angle D</math> are right angles, and <math>\angle B, \angle C, \angle E,</math> and <math>\angle F</math> are congruent. The area of the hexagonal region is <math>2116(\sqrt{2}+1).</math> Find <math>AB</math>.
+
In [[quadrilateral]] <math> ABCD</math>, <math>\angle B </math> is a [[right angle]], [[diagonal]] <math>\overline{AC}</math> is [[perpendicular]] to <math>\overline{CD}</math>, <math>AB=18</math>, <math>BC=21</math>, and <math>CD=14</math>. Find the [[perimeter]] of <math>ABCD</math>.
  
 
== Solution ==
 
== Solution ==
 +
From the problem statement, we construct the following diagram:
 +
<center><asy>
 +
pointpen = black; pathpen = black + linewidth(0.65);
 +
pair C=(0,0), D=(0,-14),A=(-(961-196)^.5,0),B=IP(circle(C,21),circle(A,18));
 +
D(MP("A",A,W)--MP("B",B,N)--MP("C",C,E)--MP("D",D,E)--A--C); D(rightanglemark(A,C,D,40)); D(rightanglemark(A,B,C,40));
 +
</asy></center><!-- Asymptote replacement for Image:Aime06i.1.PNG by joml88 -->
 +
Using the [[Pythagorean Theorem]]:
  
Let the side length be called <math>x</math>.
+
<div style="text-align:center"><math> (AD)^2 = (AC)^2 + (CD)^2 </math></div>
[[Image:Diagram1.png]]
 
  
Then <math>AB=BC=CD=DE=EF=AF=x</math>.
+
<div style="text-align:center"><math> (AC)^2 = (AB)^2 + (BC)^2 </math></div>
  
The diagonal <math>BF=\sqrt{AB^2+AF^2}=\sqrt{x^2+x^2}=x\sqrt{2}</math>.
+
Substituting <math>(AB)^2 + (BC)^2 </math> for <math> (AC)^2 </math>:
  
Then the areas of the triangles AFB and CDE in total are <math>\frac{x^2}{2}\cdot 2</math>,
+
<div style="text-align:center"><math> (AD)^2 = (AB)^2 + (BC)^2 + (CD)^2 </math></div>
and the area of the rectangle BCEF equals <math>x\cdot x\sqrt{2}=x^2\sqrt{2}</math>
 
  
Then we have to solve the equation
+
Plugging in the given information:
  
<math>2116(\sqrt{2}+1)=x^2\sqrt{2}+x^2</math>.
+
<div style="text-align:center"><math> (AD)^2 = (18)^2 + (21)^2 + (14)^2 </math></div>
  
<math>2116(\sqrt{2}+1)=x^2(\sqrt{2}+1)</math>
+
<div style="text-align:center"><math> (AD)^2 = 961 </math></div>
  
<math>2116=x^2</math>
+
<div style="text-align:center"><math> (AD)= 31 </math></div>
  
<math>x=46</math>
+
So the perimeter is <math> 18+21+14+31=84 </math>, and the answer is <math>\boxed{084}</math>.
 
 
Therefore, AB is 46.
 
  
 
== See also ==
 
== See also ==
Line 30: Line 33:
  
 
[[Category:Intermediate Geometry Problems]]
 
[[Category:Intermediate Geometry Problems]]
 +
{{MAA Notice}}

Latest revision as of 21:43, 2 February 2014

Problem

In quadrilateral $ABCD$, $\angle B$ is a right angle, diagonal $\overline{AC}$ is perpendicular to $\overline{CD}$, $AB=18$, $BC=21$, and $CD=14$. Find the perimeter of $ABCD$.

Solution

From the problem statement, we construct the following diagram:

[asy] pointpen = black; pathpen = black + linewidth(0.65); pair C=(0,0), D=(0,-14),A=(-(961-196)^.5,0),B=IP(circle(C,21),circle(A,18)); D(MP("A",A,W)--MP("B",B,N)--MP("C",C,E)--MP("D",D,E)--A--C); D(rightanglemark(A,C,D,40)); D(rightanglemark(A,B,C,40)); [/asy]

Using the Pythagorean Theorem:

$(AD)^2 = (AC)^2 + (CD)^2$
$(AC)^2 = (AB)^2 + (BC)^2$

Substituting $(AB)^2 + (BC)^2$ for $(AC)^2$:

$(AD)^2 = (AB)^2 + (BC)^2 + (CD)^2$

Plugging in the given information:

$(AD)^2 = (18)^2 + (21)^2 + (14)^2$
$(AD)^2 = 961$
$(AD)= 31$

So the perimeter is $18+21+14+31=84$, and the answer is $\boxed{084}$.

See also

2006 AIME I (ProblemsAnswer KeyResources)
Preceded by
First Question
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png