2006 AIME I Problems/Problem 13

Revision as of 17:23, 13 March 2015 by Mathgeek2006 (talk | contribs) (Solution)


For each even positive integer $x$, let $g(x)$ denote the greatest power of 2 that divides $x.$ For example, $g(20)=4$ and $g(16)=16.$ For each positive integer $n,$ let $S_n=\sum_{k=1}^{2^{n-1}}g(2k).$ Find the greatest integer $n$ less than 1000 such that $S_n$ is a perfect square.


Given $g : x \mapsto \max_{j : 2^j | x} 2^j$, consider $S_n = g(2) + \cdots + g(2^n)$. Define $S = \{2, 4, \ldots, 2^n\}$. There are $2^0$ elements of $S$ that are divisible by $2^n$, $2^1 - 2^0 = 2^0$ elements of $S$ that are divisible by $2^{n-1}$ but not by $2^n, \ldots,$ and $2^{n-1}-2^{n-2} = 2^{n-2}$ elements of $S$ that are divisible by $2^1$ but not by $2^2$.

Thus \begin{align*} S_n &= 2^0\cdot2^n + 2^0\cdot2^{n-1} + 2^1\cdot2^{n-2} + \cdots + 2^{n-2}\cdot2^1\\ &= 2^n + (n-1)2^{n-1}\\ &= 2^{n-1}(n+1).\end{align*} Let $2^k$ be the highest power of $2$ that divides $n+1$. Thus by the above formula, the highest power of $2$ that divides $S_n$ is $2^{k+n-1}$. For $S_n$ to be a perfect square, $k+n-1$ must be even. If $k$ is odd, then $n+1$ is even, hence $k+n-1$ is odd, and $S_n$ cannot be a perfect square. Hence $k$ must be even. In particular, as $n<1000$, we have five choices for $k$, namely $k=0,2,4,6,8$.

If $k=0$, then $n+1$ is odd, so $k+n-1$ is odd, hence the largest power of $2$ dividing $S_n$ has an odd exponent, so $S_n$ is not a perfect square.

In the other cases, note that $k+n-1$ is even, so the highest power of $2$ dividing $S_n$ will be a perfect square. In particular, $S_n$ will be a perfect square if and only if $(n+1)/2^{k}$ is an odd perfect square.

If $k=2$, then $n<1000$ implies that $\frac{n+1}{4} \le 250$, so we have $n+1 = 4, 4 \cdot 3^2, \ldots, 4 \cdot 13^2, 4\cdot 3^2 \cdot 5^2$.

If $k=4$, then $n<1000$ implies that $\frac{n+1}{16} \le 62$, so $n+1 = 16, 16 \cdot 3^2, 16 \cdot 5^2, 16 \cdot 7^2$.

If $k=6$, then $n<1000$ implies that $\frac{n+1}{64}\le 15$, so $n+1=64,64\cdot 3^2$.

If $k=8$, then $n<1000$ implies that $\frac{n+1}{256}\le 3$, so $n+1=256$.

Comparing the largest term in each case, we find that the maximum possible $n$ such that $S_n$ is a perfect square is$4\cdot 3^2 \cdot 5^2 - 1 = 899$.

Alternate Solution

First note that $g(k)=1$ if $k$ is odd and $2g(k/2)$ if $k$ is even. so $S_n=\sum_{k=1}^{2^{n-1}}g(2k). = \sum_{k=1}^{2^{n-1}}2g(k) = 2\sum_{k=1}^{2^{n-1}}g(k) = 2\sum_{k=1}^{2^{n-2}} g(2k-1)+g(2k).$ $2k-1$ must be odd so this reduces to $2\sum_{k=1}^{2^{n-2}}1+g(2k) = 2(2^{n-2}+\sum_{k=1}^{2^n-2}g(2k)).$ Thus $S_n=2(2^{n-2}+S_{n-1})=2^{n-1}+2S_{n-1}.$ Further noting that $S_0=1$ we can see that $S_n=2^{n-1}\cdot (n-1)+2^n\cdot S_0=2^{n-1}\cdot (n-1)+2^{n-1}\cdot2=2^{n-1}\cdot (n+1).$ which is the same as above. To simplify the process of finding the largest square $S_n$ we can note that if $n-1$ is odd then $n+1$ must be exactly divisible by an odd power of $2$. However, this means $n+1$ is even but it cannot be. Thus $n-1$ is even and $n+1$ is a large even square. The largest even square $< 1001$ is $900$ so $n+1= 900 => n=899$

See also

2006 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS